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* Work on your projet

Presentations and material
will be available at :
jgula.fr/ModNum/

https://github.com/quentinjamet/
Tuto/tree/main/ModNum
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Evaluation

o The evaluation is based on a project, which consists in
setting up a realistic configuration of the region of your
choice, run the experiment and perform some analysis.

o Written Report due for: Jan. 29
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Useful references

Extensive courses:

* MIT:

https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-950-atmospheric-and-oceani
c-modeling-spring-2004/lecture-notes/

* Princeton: https://stephengriffies.github.io/assets/pdfs/GFM_lectures.pdf

Overview on ocean modelling and current challenges:

* Griffies et al., 2000, Developments in ocean climate modelling, Ocean Modelling.
http://jgula.fr/ModNum/Griffiesetal00.pdf

* Griffies, 2006, "Some Ocean Model Fundamentals", In "Ocean Weather Forecasting: An Integrated
View of Oceanography", 2006, Springer Netherlands. http://jgula.fr/ModNum/Griffies_Chapter.pdf

* Fox-Kemper et al, 19, “Challenges and Prospects in Ocean Circulation Models"
http://jgula.fr/ModNum/FoxKemperetal19.pdf

ROMS/CROCO:
* https://www.croco-ocean.org/documentation/

* https://croco-ocean.gitlabpages.inria.fr/croco_doc/index.html

* Shchepetkin, A., and J. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-
explicit, free-surface, topography-following- coordinate ocean model. Ocean Modell.
http://jgula.fr/ModNum/ShchepetkinMcWilliams05.pdf
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* For what ocean model are used for?



https://www.technologyreview.com/2018/02/08/145744/what-the-hell-is-a-climate-modeland-why-does-it-matter/amp/

* For what ocean model are used for?

* Weather forecasts and Climate projections

* Explore different states of the ocean
and earth system

» Better understand the complex dynamics of geophysical flow,
from small to large scales

* Testing (idealized) mathematical models


https://www.technologyreview.com/2018/02/08/145744/what-the-hell-is-a-climate-modeland-why-does-it-matter/amp/
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Can be understood using theory and simplified models

THE WESTWARD INTENSIFICATION OF WIND-DRIVEN OCEAN CURRENTS
Henry Stommel
(Contribution No. 408, Woods Hole Oceanographic Instiution)

Abstract--A study is made of the wind-driven circulation in 2 homogeneous rec-
tangular ocean under the influence of surface wind stress, linearised bottom friction,
horizontal pressure gradients caused by a variable surface height, and Coriolis force.

An intense crowding of streamlines toward the western border of the ocean is dis-
covered to be caused by variation of the Coriolis parameter with latitude. It is suggested
that this process is the main reason for the formation of the intense currents (Gulf stream
and others) observed in the actual oceans.

1000 km

Fig. 5--Streamlines for the case where the
Coriolis force is a linear function
of latitude .

Stommel (1948)

JOURNAL OF METEOROLOGY

ON THE WIND-DRIVEN OCEAN CIRCULATION

By Walter H. Munk

Institute of Geophysics and Scripps Institution of Oceanography, University of California!
(Manuscript received 24 September 1949)
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Fi1c. 8. Schematic presentation of circulation in a rectangular ocean resulting from zonal winds (filled arrowheads), meridional winds
(open arrowheads), or both (half-filled arrowheads). The width of the arrows is an indication of the strength of the currents. The
nomenclature applies to either hemisphere, but in the Southern Hemisphere the subpolar gyre is replaced largely by the Antarctic
Circumpolar Current (west wind drift) flowing around the world. Geographic names of the currents in various oceans are summarized
in table 3.

Munk (1950)



http://ido.at.fcen.uba.ar/index_archivos/Stommel_1948.pdf
https://journals.ametsoc.org/view/journals/atsc/7/2/1520-0469_1950_007_0080_otwdoc_2_0_co_2.xml
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But reality is much more turbulent:

Sea Surface Height Maps from Radar Altimetry Oct 1992

‘Snapshot’ of the global sea surface height (SSH)
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And HF motions like tides:

& Experiment: eNATL60-BLBT02

ate: 2009-67-11 81:00 ap

B 6.6 .z 1.4
Surface current speed [m/s]



https://vimeo.com/300943265

A zoo of processes and scales
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Temporal and spatial scales in the ocean
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Temporal and spatial scales in the ocean

“We can therefore set up seven equations independent
from each other with the seven normally occurring variables.
As far as it is possible to have an overview of the
problem now, we must conclude that our knowledge of
the laws of atmospheric processes is sufficient to serve
as a basis for a rational weather prediction. However,
it must be admitted that we may have overlooked important
factors due to our incomplete knowledge. The
interference of unknown cosmic effects is possible.
Furthermore, the major atmospheric phenomena are accompanied
by a long list of side effects, such as those of an
electrical and optical nature. The question is to what ex-
tent such side effects could have considerable effects on
the development of atmospheric processes. Such effects
evidently do exist. The rainbow, for instance, will result
in a modified distribution of incoming radiation and it
is well known that electrical charges influence condensation
processes. However, evidence is still lacking on
whether processes of this kind have an impact on major
atmospheric processes. At any rate, the scientific method
IS to begin with the simplest formulation of the problem,
which is the problem posed above with seven variables
and seven equations.” [Bjerknes 1904]
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We know the equations:

e 7 Variables:

* U, VW, P, p, TS (qforthe atmosphere)

e 7 equations:

« Momentum (u,v,w): O = ﬁP -
[Navier-Stokes] — 4+ u - Vu -+ QQ X U + g k= — - F
ot p
« Equation of State (EOS): 0= p(T, S’ p)
e Conservation of mass: ap
(continuity) 375 + V pu =0
e Conservation of heat E =St
(of internal energy): Dt
DS
 Conservation of salt: — =85

(humidity) Dt



-
We know the equations:

But we don’t know
the solutions...
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We know the equations:

Millennium Prize problems

Navier—-Stokes existence and smoothness

The Clay Mathematics Institute in May 2000 made this problem one of its seven

Millennium Prize problems in mathematics. It offered a US $1,000,000 prize to the first

person providing a solution for a specific statement of the problem:

Prove or give a counter-example of the following statement:
In three space dimensions and time, given an initial velocity field, there exists a vector
velocity and a scalar pressure field, which are both smooth and globally defined, that solve

the Navier—Stokes equations.


https://en.wikipedia.org/wiki/Millennium_Prize_problems
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Millennium_Prize_problems
https://en.wikipedia.org/wiki/United_States_dollar
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness#cite_note-problem_statement-1

We know the equations:

Navier-Stokes 2% Ve L F
[Momentum 8t P

equations]

turbolenza by da Vinci [1507]

Big whorls have little whorls,
which feed on their velocity;
And little whorls have lesser whorls,

And so on to viscosity.

L.F. Richardson [1922]
Turbulent water jet (Re = 2300) [Van Dyke, 82]
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One way to solve them (approximately):
— Numerical modelling



Ocean modeling principle

An ocean model is simplified representation of physical
processes that take place in the ocean.

The ocean is divided into boxes (finite difference, finite volume) : discretization

The NS equations can be solved on the grid using numerical
methods

Example of a finite difference grid




Ocean modeling principle

If we know:
. Principle:

° The ocean state at time t :

uvw TS, ..

Bounday
\conditions

* Boundary conditions :

surface, bottom, lateral sides Ocean at time t Ocean at time t + dt

—  We can compute an estimated state of the ocean at time t+dt
using numerical approximations of fluid dynamics equations
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Ocean modeling principle

One major Problem:

Setting the model’s grid scale to the Kolmogorov length

(to resolve diffusive processes)

A =107m over a global ocean domain of volume 1.3 x 10'® m? requires 1.3 x 10?7 discrete grid
cells.

And Direct Numerical Simulation (DNS) of the global ocean climate requires 3 x 10 time steps
of one second (1000 years).

So we will be dust long before DNS of global
ocean climate is possible: 9
1yr |- hydrothermalism spriaﬂing;:}s:f' seasoral i
1 Imoni— mesoscale and ( ; ;gg// -
In the meantime, we must use 2 R\
o . . @ Awk - ﬂmml w\sm )8 variability
subgrid scale parameterizations £ | —
to simulate the ocean. 1 R )
— (See Lesson 4) R :
imm icm 10cm im lomspa:i(;(l)r;cal;km 10km 100km 1000km 10°%km 10°%km
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Ocean Circulation Models

* ROMS = CROCO https://www.croco-ocean.org/

* NEMO http://www.nemo-ocean.eu/

* MITgcm http://mitgecm.org/
* HYCOM http://hycom.org/

* POP http://www.cesm.ucar.edu/models/cesm1.0/pop2/

* OFES http://www.jamstec.go.jp/esc/ofes/eng/

* MOM http://www.gfdl.noaa.gov/ocean-model

* POM http://www.ccpo.odu.edu/POMWEB/

* etc


https://www.croco-ocean.org/
http://www.nemo-ocean.eu/
http://mitgcm.org/
http://mitgcm.org/
http://hycom.org/
http://hycom.org/
http://www.cesm.ucar.edu/models/cesm1.0/pop2/
http://www.cesm.ucar.edu/models/cesm1.0/pop2/
http://www.jamstec.go.jp/esc/ofes/eng/
http://www.jamstec.go.jp/esc/ofes/eng/
http://www.gfdl.noaa.gov/ocean-model
http://www.gfdl.noaa.gov/ocean-model
http://www.ccpo.odu.edu/POMWEB/
http://www.ccpo.odu.edu/POMWEB/

e
Ocean Circulation Models

* Mechanistic studies of ocean and climate processes:

* Process studies using fine resolution (< 1 km) simulations (MITgem, SUNTANS,
CROCO-NH)

* Mechanisms for coastal and shelf processes (< 10 km) (ROMS/CROCO,
MARS3D, HYCOM)

* Mechanisms for climate variability (basin to global) (MOM6, NEMO)

* Operational predictions and state estimation
 Coastal forecasting India INCOIS
* Coastal forecasting USA NCEP

- Ocean state estimation ECCO

* Projections for future climate change

* IPCC-class simulations with anthropogenic forcing (e.g. CMIP)
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Ocean

Modelling
example:

IPCC global run

Typical length =
100 - 1000
years

2 4 P25 126020 F 50® % Small et al, 14



Ocean
Modelling
example:

Mesoscale-
resolving basin-
scale simulation

Typical length =
10 - 100 years

North-Atlantic

coupled
simulations:

- oceanic model (6 km)
- atmospheric model (18 km)
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Realistic 2005 - Jan 15 - 03:00 | SSH [m]
Modelling:

2
Forced Atlantic
1
simulations:
- oceanic model (3 km) .
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Modelling:
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Basin-scale configuration
GIGATL

Submesoscale-permitting
basin-scale simulation

Typical length = 1 year

Z[9074s71]

Horizontal resolutions up
to .75 - 1 km with 100
topography following levels

(refined at the bottom)
= 10500 x 14000 x 100
points

2008 - May 23

simulation GIGATL
CROCO cors s e commy s

86X~ 900 m - 10500 X 14000 X 100 points

including hourly surface
forcings and tides.

Run on 10000 processors - 40M cpu-hours -
Ahoiit APR of data

[20°N
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LLC4320

Submesoscale-permitting global simulation —

Kuroshio Extension (KEx)

A

» . iyt £ Pt 4 I s S %
W e Syl ey Sy iy " ” 3 - 1

0.0

Drake Passage (Drake)

Model MITgcm (1/48) [Torres et al, 19]



Estimate of horizontal grid spacings of the IPCC
ocean models

* The gray dots denote the finest grid ol R
SpaCingS reported by the IPCC : % N - -:?i(r)\(t)crfgll\d/liwcddics resolved
repOf’tS by year Of pu b|icati0n, " ..\ m summer SML eddies resolved

107 3 > BML eddies resolved under KPP
except the latest one from the ; = BML eddies resolved under MY
ECCO MITgcm LLC4320 simulation. ! LA b L

* The black line denotes the estimate
predicted by Moore’s Law, while the
shaded regions denote the grid
spacing intervals resolving 50% and
90% of surface mixed-layer eddies
globally based on the observations
and bottom mixed-layer eddies 10"
based on simulations.

10' 3

10" 3

Grid spacing (km)

1072
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Year

Dong et al. (2020)



Ocean Modelling
examples:

Ctefees  Xed b S

Submesoscale-resolving
regional simulation

O P T\, T T e

19.!

Typical length = 1 month

13.(

6.5

0.0

A portion of the Atlantic domain
showing mean SST and several (1-way)
nested grids:



ROMS (Az = 500 m)



P : 7 Submesoscale dynamics at the surface

Model Vs Satellite observations

eg¥= Surface relative vorticity — — ;
E NS AR | === N




! Submesoscale dynamics at the surface
= Model Vs Satellite observations
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Submesoscale dynamics at the surface
Model Vs Satellite observations
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(Scalable Lateral Mixing and Coherent Turbulence)

Model



Submesoscale dynamics in the Abyss!

H ., —0.50 -0.25 0.00 0.25 0.50
T, 1 R—
W 39 _

=04

Az = 500m

relative vorticity at -1800 m

d !
—32 =31

[Vic et al., 2018]
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Dispersion of larvae by abyssal turbulence

“'\[} i f

ROMS6 - mean currents

Mean
currents only *™™

Larvae dispersion AW T3W 32w 31w
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Model vs. Observations

— The ocean Is a chaotic system

year 2012, day 365

S e
=09 =0.6 -0.3 0.0 0.3 0.6
SSH [m]



../../PostDoc_EOAS/Figure/diag_chao12/movie/SSH_anim_global.mp4

Model vs. Observations
— The ocean Is a chaotic system

6 1

AMOC= f: f: v dx dz
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Model vs. Observations

— The ocean is a chaotic system
/ /Z'

)



../../../Documents/conf_workshop/SWOT/STM_2022/movie_curloverf_overlay_MEDWEST60-GSL09-ens90_coloc_x264_1080px_10fps_crf20.mp4

From submesos

OCT .

dx = 5-7 km SS'T

Simulations using ROMS: Regional is a relative concept
Animation from J. Molemaker
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Nested domain with open boundaries with dx = 2.5 km
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dx = 50m, non-hydrostatic
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Activity 1 — Run an idealized ocean basin



Activity 1 — Run an idealized ocean basin
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Activity 1 — Run an idealized ocean basin

- Jobcomp (compilation)

- cppdefs.h (Numerical/physical
options)

- param.h (qgris size/ parallelisation)

- croco.in (choice of variables,
parameter values, etc.)



http://croco.in/

Activity 1 — Run an idealized ocean basin

https://github.com/quentinjamet/Tuto
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1) Preparing and compiling the model

For that use the the jobcomp bash file
/jobcomp

1. Set library path
2. Automatic selection of option accordingly the platform used
3. Use of makefile
" C-preprocessing step : .F = .fusing the CPP keys defintions (in
cppdefs.h file, customization of the code)
" Compilation step : .f = .0 (object) using Fortran compiler
" Linking step : link all the .o file and the librairy (Netcdf, MPI, AGRIF)

" -->produce the executable croco



1) Preparing and compiling the model
Edit the param.h and cppdefs.h file to set-up the model

param.h defines the size of the arrays in ROMS:

selif defined REGIONAL Given by running make_grid

# if defined BENGUELA

paramete== =— Southern Benguela test Model
# EIEE R‘
parameter (LLm0=27, MMm0=7?, N=77)

# endif

Defined in romstools_param.m

Basic options
cppdefs.h: <:
More advanced options

- Define CPP keys used by the C-preprocessor when compiling the model.
- Reduce the code to its minimal size: fast compilation.

- Avoid FORTRAN logical statements: efficient coding.
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1) Preparing and compiling the model

i I BASIC OPTIONS !
VleW | MORE ADVANCED OPTIONS
cppdef.h - " podel dynamics *
. ™ Configuration Name */ # define SOLVE3D odel dynamics
efine

fl|e # define BENGUELA # define UV _COR

™ Parallelization */ # define UV ADV
- # undef OPENMP # ifdef TIDES
# undef MPI # define SSH_TIDES
. . # define UV TIDES
! Embedding */ # define TIDERAMP
# undef AGRIF # endif
™ Open Boundary Conditions */ Jx Grid configuration */
# undef TIDES # define CURVGRID
- # define MASKING
# undef OBC_WEST I* Input/Output & Diagnostics */
# define OBC_NORTH # define AVERAGES
# define OBC_SOUTH # define AVERAGES K
" Embedding conditions */ # define DIAGNOSTICS_TS
# ifdef AGRIE ;!i define DIAGNDSTICSEUV . crate ¥
quation of State #/ ...

# undef AGRIF_OBC_EAST [ Surface Forcing */ ...
# dEﬁne AGRIF_OBC_WEST ’I* Latera| FOrcing *Jl'
# define AGRIF_OBC_NORTH I* Input/Output & Diagnostics #/ ...
# define AGRIF_OBC_SOUTH ¥ Bottom Forcing /...
# endif /¥ Point Sources - Rivers #/ ...
. o . I* Lateral Mixing #*/ ...
/ Applications */ [* Vertical Mixing */ ...
# undef BIOLOGY /¥ Open Boundary Conditions */ ...
# undef FLOATS I* Embedding conditions */ ...

# undef STATIONS

# undef PASSIVE TRACER
# undef SEDIMENTS

# undef BBL



2) Running the model

The namelist roms.in

roms.in provides the run time parameters for ROMS:

title:
Southern Benguela
time_stepping: NTIMES di[sec] NDTFAST NINFO
480 5400 60 1
S-coord: THETA_ S, THETA_B, Hc(m)

6.0d0 0.0d0  10.0d0
-_______--—*

grid: filename Warning ! These
ROMS_FILES/roms_grd.nc
forcing: filename
ROMS_FILES/roms_frc.nc
bulk_forcing: filename
ROMS_FILES/roms_blk.nc
climatology: filename
ROMS_FILES/roms_clm.nc
boundary: filename
ROMS_FILES/roms_bry.nc
initial: NRREC filename
1

should be identical to

the ones in

ROMS_FILES/roms_ini.nc
restart: NRST, NRPFRST / filename
480 -1
ROMS_FILES/roms_rst.nc

romstools_param.m

history: LDEFHIS, NWRT, NRPFHIS / filename
T 480 0O
ROMS_FILES/roms_his.nc
averages: NTSAVG, NAVG, NRPFAVG / filename
1T 48 0
ROMS _FILES/roms _avg.nc

primary _history fields: zeta UBAR VBAR U V wrtT(1:NT)
T FF FF 10F
auxiliary_history _fields: rho Omega W Akv Akt Aks HBL Bostr
FF FF F F F F
primary_averages: zeta UBAR VBAR U VWV wrT(1:NT)
T T T TT 10T
auxiliary_averages: rho Omega W Akv Akt Aks HBL Bostr
FT TF TF T T

rho0:
1025.d0
lateral_visc: VISC2, VISC4 [m*2/sec for all]
0. 0.
tracer_diff2: TNU2({1:NT) [m*2/sec for all]
10*0.d0

bottom_drag: RDRG [m/s], RDRG2, Zob [m], Cdb_min, Cdb_max
00d04 0d3 1d2 1d4 1.d1

gammaz:
1.d0
sponge: X _SPONGE [m], V_SPONGE [m"*2/sec]
100.e3 800.

nudg_cof: TauT _in, TauT out, TauM _in, TauM_out [days for all]
1. 360. 10, 360.



Activity 1 - Run an idealized ocean basin

- param.h
parameter (LLm@=

- cppdefs.h

Cdb_min, Cdb_max

RDRGZ, Zob [m],

a. 8.

=

/m3], T@ [Celsius], 5@ [PSU], TCOEF [L/Celsius],

SCOEF [1/PSU]
9. =

a.28 .

tracer_diffZ: TNUZ
1008, @



Homework

* For next time:
* Read https://www.jgula.fr/ModNum/Stommel48.pdf
* Read https://www.jgula.fr/ModNum/Munk50.pdf
* Read

https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=1817&context=journal_of marine
_research



https://www.jgula.fr/ModNum/Stommel48.pdf
https://www.jgula.fr/ModNum/Munk50.pdf
https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=1817&context=journal_of_marine_research
https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=1817&context=journal_of_marine_research
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