



## Deconstructing the subtropical AMOC variability

**Q. Jamet**<sup>(1)</sup>, W. K. Dewar<sup>(1,2)</sup>, N. Wienders<sup>(2)</sup>, B. Deremble<sup>(3)</sup>, S. Close<sup>(4)</sup> and T. Penduff<sup>(1)</sup>



<sup>(1)</sup>Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
 <sup>(2)</sup>Dept. of Earth, Ocean, and Atmospheric Science, FSU, Tallahassee, USA
 <sup>(3)</sup>Laboratoire de Météorologie Dynamique, ENS, Paris, France
 <sup>(4)</sup>Laboratoire d'Océanographie Physique et Spatiale, Univ. de Bretagne Occidentale, Brest, France













The Atlantic Meridional Overturning Circulation (AMOC):

 $(\mathbf{i})$ 

BY

- Synthetic representation in the y-z plan of the complex North Atlantic ocean circulation
- Plays a central role in climate by redistributing heat, freshwater and carbon
- Long-standing interests in understanding its variability





# Motivations



- Sources of AMOC variability in the NA subtropical gyre:
  - Adjustment to signals of remote origin (NA subpolar gyre, South Atl.) [Johnson 2002; Biastoch 2008a,b; Hodson 2012; Jackson 2016]
  - Local atmospheric forcing [Eden 2001a,b; Hirschi 2007; Deshayes 2008; Gastineau 2012]
  - Local intrinsic oceanic variability [Gregorio 2015; Leroux 2018; Jamet 2019]
- Potentially, complex interactions [Spall 1996a,b; Bower 2000; Zhang 2007; Andres 2016] may complicate the interpretation of observations (RAPID) ...



 $(\mathbf{i})$ 

BY

CC



#### Nonetheless, we show that AMOC can be understood as a linear combination of signals with different origin



 $AMOC \approx AMOC^{ATM} + AMOC^{REMOTE} + AMOC^{INTRINSIC}$ 

# Method



5

 <u>Isolating the NA dynamics</u> <u>from the rest of the world</u>:

 $(\mathbf{i})$ 

BY

- Regional, eddy-resolving (1/12°) oceanic configuration of the MITgcm
- Partially coupled (CheapAML [Deremble 2013])
- Atmospheric forcing: DFS4.4 [Brodeau 2010]
- Boundary conditions: ORCA12 [Molines 2014]
- 50 yr long simulations

- <u>Isolating the forced variability from</u> <u>its intrinsic counterpart</u>:
  - 12 ensemble members simulations
  - Micro initial conditions [Stainforth 2007]
  - Ensemble spread → intrinsic signal

$$\sigma_{I}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[ f_{i}(t) - \langle f_{i}(t) \rangle \right]^{2}$$

Ensemble mean 
$$\rightarrow$$
 forced signal  

$$\sigma_F^2 = \frac{1}{T} \sum_{t=1}^{T} \left[ \langle f_i(t) \rangle - \overline{\langle f_i(t) \rangle} \right]^2$$

### Isolating local atmospheric forcing from signals of remote origin:

| Atmosphere<br>Open boundaries | Normal year<br>Aug 2003 – July 2004 | Fully Varying<br>1963-2012 |
|-------------------------------|-------------------------------------|----------------------------|
| Climatological                | RESIDUAL                            | ATM                        |
| Fully Varying                 | REMOTE                              | REALISTIC                  |







- The simulation delivers a reliable representation of the North Atlantic ocean circulation
- Ensemble production represents about 8,000,000 cph and 150 TB
- Model configuration and outputs are available at: https://github.com/quentinjamet/chaocean





 Compare the forced AMOC variability simulated by the 3 ensembles REALISTIC, ATM, and REMOTE





### Marked time scales separation

- Remote (boundary) signals:
   → decadal time scales
- Local (atmospheric) forcing:
   → interannual time scales



 Compute a linear reconstruction as ATM + REMOTE and compare it with REALISTIC





- High correlations between reconstructed and realistic AMOCs in most of the basin
- Forced AMOC variability can be understood as a linear combination:

$$(AMOC) \approx \langle AMOC_{.<10 yr}^{ATM} \rangle + \langle AMOC_{.>10 yr}^{REMOTE} \rangle$$

## AMOC at 26.5°N Intrinsic variability – ensemble spread

 Compare intrinsic AMOC variability in each ensemble and assess its sensitivity to the sourrounding forced signal

 $(\mathbf{i})$ 

BY



Each ensemble exhibits specific ensemble mean AMOC variability,
 BUT they all simulate a similar ensemble spread

No causal relationship between intrinsic and forced AMOC

9





#### AMOC can be understood as a linear combination of signals with different origin

 $(\mathbf{i})$ 

BY

CC



 $AMOC \approx AMOC^{ATM}_{.<10 yr} + AMOC^{REMOTE}_{.>10 yr} + AMOC^{INTRINSIC}$ 

• For further details, see Jamet et al. J. Clim 2020



 Compare ensemble results with those obtained with single simulations, i.e. without ensemble averaging



Correlations decrease to r=0.6 in the subtropical gyre, and to r=0.2 in the eddying Gulf Stream

# Supplementary

**()** BY





