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Abstract10

An important characteristic of geophysically turbulent flows is the transfer of energy between
scales. Balanced flows pass energy from smaller to larger scales as part of the well-known
upscale cascade while submesoscale and smaller scale flows can transfer energy eventually to
smaller, dissipative scales. Much effort has been put into quantifying these transfers, but a
complicating factor in realistic settings is that the underlying flows are often strongly spa-
tially heterogeneous and anisotropic. Furthermore, the flows may be embedded in irregularly
shaped domains that can be multiply connected. As a result, straightforward approaches
like computing Fourier spatial spectra of nonlinear terms suffer from a number of conceptual
issues. In this paper, we develop a method to compute cross-scale energy transfers in general
settings, allowing for arbitrary flow structure, anisotropy and inhomogeneity. We employ a
Green’s function approach to the kinetic energy equation to relate kinetic energy at a point
to its Lagrangian history. A spatial filtering of the resulting equation naturally decomposes
kinetic energy into length scale dependent contributions and describes how the transfer of
energy between those scales takes place. The method is applied to a doubly periodic simula-
tion of vortex merger, resulting in the demonstration of the expected upscale energy cascade.
Somewhat novel results are that the energy transfers are dominated by pressure work, rather
than kinetic energy exchange, and dissipation is a noticeable influence on the larger scale
energy budgets. We also describe, but do not employ here, a technique for developing filters
to use in complex domains.
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1. Introduction12

A surprising aspect of nonlinear geophysical flows; namely, that they transfer energy from13

smaller to larger scales and thus in a sense opposite to that of three-dimensional, isotropic14

turbulence, has been known for some time (Fjortoft (1953), Kraichnan (1967), Charney15

(1971)). The reason for this behavior has been traced to the quasi-two dimensionality of16
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so-called ‘balanced’ dynamics, which strongly constrains vortex tube stretching. Scott and17

Wang (2005) argue for the observation of an upscale cascade in the ocean from analysis of18

satellite sea surface height measurements and Scott and Arbic (2007) argue for the same in19

numerical models. Others have argued that this behavior in wavenumber space is accom-20

panied by a transfer in the frequency domain to lower frequencies (Arbic et al. (2012)) and21

extensions to the combined wavenumber frequency domain have also been found (Arbic et al.22

(2014)).23

An upscale cascade dynamically and importantly affects the ocean. For example, the24

transfer from high frequency mesoscale variability to low frequencies implicates eddies as25

a mechanism effecting climate variability (Holland (1978), Berloff and McWilliams (1999),26

and Dijkstra and Molemaker (1999)). Further, the large scale circulation receives energy27

from the large scale, slowly evolving winds (Wunsch and Ferrari (2004), Ferrari and Wunsch28

(2009)) and it is generally thought this energy is shunted to the mesoscale by geostrophic29

instabilities. An equilibrated ocean must then find a pathway for the mesoscale to lose its30

energy, and the so-called upscale cascade presents a hindrance. The return of energy to31

larger scales where dissipation is vanishingly weak has led to considerable recent interest in32

mesoscale energy loss.33

Given that cross scale energy exchange in the ocean is central to ocean and climate34

dynamics, it is important to examine how those transfers can be measured. Most energy ex-35

change diagnoses of both observations and models have proceeded through the use of Fourier36

transforms (Arbic et al. (2014)), which requires that the data be converted into forms consis-37

tent with the approach. Speaking primarily about spatial analyses, geographically confined38

regions of interest are usually defined. Since the data are not spatially periodic, as assumed39

by Fourier methods, tapering, or windowing, is usually applied. The subsequent analysis40

then occurs on the windowed domain, and the results are in some sense representative of41

an averaged statement of the transfers in the domain. Another complicating factor is that42

irregularities can appear inside the domain. An example is Bermuda, sitting in the open43

Atlantic at a location near to the Gulf Stream and the separated North Atlantic jet. Meth-44

ods, often subjective, are required to handle such areas, frequently involving an interpolation45

over the problematic regions. Nonetheless, these analyses have usually yielded answers con-46

sistent with our theoretical expectations. They do represent spatial averages however, and47

further understanding of inhomogeneous regions, like the Kuroshio and the Gulf Stream,48

require more spatial resolution. This served in part as motivation for Aluie et al. (2018) who49

examined energy exchanges locally based on a purely spatial filtering approach.50

The focus of this paper is to propose a new method for analyzing kinetic energy in models51

and observations that appears to avoid many of the above mentioned issues with Fourier52

methods. It also differs from previous approaches in several ways, primarily in focussing on53

a Lagrangian-like approach and working directly with the kinetic energy equation. We apply54

the technique to primitive equation model output describing vortex merger, and hence an55

upscale cascade. The results indicate an upscale cascade, thus demonstrating the viability of56

the procedure, even though it is not limited to this restrictive setting. The theoretical basis57

for the procedure is outlined in the next section, the model description and applications58

appear in the following section. We discuss and summarize the paper in the concluding59

section, emphasizing new results specific to the energetics of the upscale cascade and outline60

thoughts for further work. Methods to handle domain irregularities are outlined in Appendix61
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A. An Eulerian version of the present analysis appears in Appendix B. Derivation of62

comparable formulas for potential energy are discussed in Appendix C and modifications to63

the analysis introduced when using isopycnal coordinates are outlined in Appendix D.64

2. An Analysis of the Kinetic Energy Equation65

2.1. Overview66

Below we present an analysis of the kinetic energy equation. In brief, our plan is to67

apply a Green’s function analysis to the kinetic energy equation. The result relates the68

final kinetic energy of a parcel to its initial kinetic energy and its history along its (quasi-)69

Lagrangian trajectory. We then filter this equation in physical space to obtain a statement70

about a length scale based decomposition of the final kinetic energy. Similar filterings of71

the initial kinetic energy and kinetic energy sources then yield statements about cross-scale72

energy transfers. Finally, we average the point-wise kinetic energy decomposition to obtain a73

more representative view of the cross-scale transfers. These steps are spelled out in sequence74

in the following subsections. The reader wishing to skip mathematical detail can go directly75

to equations (36) - (38), where the results are summarized.76

We begin with the hydrostatic equations in Cartesian coordinates, the zonal momentum77

component of which is78

ut + uux + vuy + wuz − fv = −px + ν(uxx + uyy + uzz) (1)

where u is zonal velocity, subscripts x, y, z, and t denote partial derivatives with respect to79

zonal, meridional and vertical location and time, respectively. The quantity p is pressure and80

ν is viscosity. A partial step to constructing the kinetic energy equation involves multiplying81

(1) by u, which results in82

(u2/2)t + u(u2/2)x + v(u2/2)y + w(u2/2)z − fuv = (2)

−upx + (ν(uux))x + (ν(uuy))y + (ν(uuz))z − ν(ux)
2 − ν(uy)

2 − ν(uz)
2

A similar procedure on the meridional momentum equation and adding returns the kinetic83

energy equation84

Kt +∇ · uK = −uh · ∇hp− ε+∇ · (ν∇K) (3)

where K = u2/2 + v2/2 = |uh|2/2 and ε = ν∇uh ·∇uh = ν|∇uh|2 is dissipation. We rewrite85

this as86

Kt +∇ · uK −∇ · (ν∇K) = R (4)

where R = −uh · ∇hp − ε contains the ‘sources’ and ‘sinks’ for kinetic energy. Given that87

pressure gradients appear in the momentum equations as a force acting on a fluid particle,88

the quantity −uh · ∇hp represents movement in the direction of a force. We will thus refer89

to it as ‘pressure work’. The quantity −ε is simply dissipation of kinetic energy.90

Exploiting the hydrostatic balance, pressure work can be rewritten as91

−uh · ∇hp = −∇ · up+ wb (5)

where b is buoyancy. The last quantity in (5) is the exchange between kinetic and potential92

energy. In this paper we work primarily with pressure work, noting that potential energy93

exchange is a component of pressure work.94
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2.2. Comparison to Other Approaches95

Working directly with kinetic energy, via (4), distinguishes this approach from others.96

Traditional Fourier analysis proceeds by transforming (1) and multiplying by the momentum97

transform conjugate û(k)∗ where k denotes a wavenumber. The result (Ê(k) = (ûû∗+v̂v̂∗)/2)98

is usually interpreted as the energy spectrum although more properly it is related to the99

momentum spectrum. The relation of Ê(k) to energy comes indirectly from Parseval’s100

equality, i.e.101 ∫
V

Kdx =

∫
k

E(k)dk (6)

which, while useful, argues this approach is restricted to integral statements. In contrast,102

the Fourier transform of K is103

K̂(k) =
1

2

∫
p

[û(p)û(k − p) + v̂(p)v̂(k − p)]dp (7)

which, although quite different from Ê(k), still satisfies Parseval’s identity while being di-104

rectly related to kinetic energy.105

To probe into the spatial structure of energy transfers, it is natural to remain in the106

physical domain. In this sense, our approach is like that of Aluie et al. (2018). We differ107

from them in that they ‘coarse-grain’ (1) and multiply by the coarse grained velocity to108

obtain an equation describing K = 0.5(u2 + v2), where the bar denotes the coarsening109

operator. In the process, terms appear in the K equation involving third order quantities110

like u(uux)− u(u ux), which in the LES community are interpreted as measuring the energy111

cascade due to wave-mean flow interaction. They describe the effect on K, following a parcel112

moving at u, of ‘sub-grid’ scale processes.113

Clearly the coarsening operator is one of the primary distinctions between Aluie et al.114

(2018) and the present approach. In fact, if we choose the coarsening operator as a Dirac delta115

function, then u = u and our approaches merge. The cost of this choice is the wave-mean116

flow interaction term vanishes, leading to the statement that the unfiltered equations do not117

cascade. In our view, cascading is broader than wave-mean flow interaction and occurs in118

unfiltered results, as evidenced in Fig. 1. The panels show results from the numerical model119

discussed in detail later in the paper. For now, we mention they are plots of kinetic energy in120

a layer and come from day 20 and day 585 of a doubly periodic numerical experiment typified121

by vortex merger. Both plots are in physical space and neither plot has been coarse-grained122

or filtered. Visual comparison suggests the later plot is characterized by larger length scales123

than the earlier. Spectra of ‘normalized’ kinetic energy, i.e. of the variable κ = a(t)K, for124

both days, taken along the line in Fig. 1 (right), appear in Fig. 2. The integrated kinetic125

energies along this line were used to normalize the kinetic energies, i.e. a(t) = (
∫
y
K(t)dy)−1,126

so that the total integral in both plots,
∫
y
κdy, was unity. This was done to remove amplitude127

variations that would interfere with the comparisons of the wavenumber content. The earlier128

spectrum (red) is characterized by enhanced energies at higher wavenumbers, while the later129

(blue) shows elevated levels at lower wavenumbers. Clearly a ‘cascade’ has occurred in these130

unfiltered plots and it is this behavior we seek to quantify.131

Although our procedure differs from that of Aluie et al. (2018), we do not criticize their132

approach. They adopt a procedure of clear relevance to modelers interested in parameteri-133

zation. Our approach is meant for the full diagnosis of ‘eddy-resolving’ models.134

4

©2020 American Geophysical Union. All rights reserved.



Day 20

100 200 300

50

100

150

200

250

300

350

Year 1, Day 220

100 200 300

50

100

150

200

250

300

350

Figure 1: Distribution of kinetic energy in layer two of our 4 layer model on (left) year 0 day 20 and year 1
day 220 (right)
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Figure 2: Spectra of kinetic energy K̂ from year 0 day 20 (red) and year 1 day 220 (blue). Clearly a cascade
of kinetic energy to larger scales has occurred in this unfiltered view of kinetic energy.

2.3. Kinetic Energy at a Single Point135

We now apply a Green’s function analysis, which leads eventually to the construction136

of kinetic energy at a point, and begins by multiplying (4) by some space-time dependent137

function G.138

GKt +G∇ · uK −G∇ · (ν∇K) = GR (8)

Straightforward calculus leads to139

(GK)t +∇ · uGK −∇ · (νG∇K) +∇ · (Kν∇G) (9)

−K(Gt +∇ · uG+∇ · (ν∇G)) = RG

Again, appealing to straightforward Green’s function methods, we suppose G satisfies140

Gt +∇ · uG = −∇ · (ν̂∇G)− δ(x− xo, t− to) (10)

5
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where δ is the usual Dirac delta function centered on the so-called ‘source points’ xo, to and141

ν̂ is a viscosity-like quantity. It is not necessarily equal to ν, although in this paper we will142

always discuss cases where ν̂ = ν. Boundary conditions are required to solve (10). As is143

typical for Green’s functions, the boundary conditions will always be homogeneous, however144

how they will be distributed between specified values of G and its normal derivatives on the145

boundary are yet to be determined.146

Eq. (10) is almost a simple advection-diffusion equation, differing only because viscosity147

appears multiplied by −1, i.e. −ν̂ < 0, as opposed to ν̂ > 0 occurs on the right hand148

side. In fact, such a result is standard in Green’s function analyses, where the equation149

solved by G is the adjoint of the equation governing K, and is handled by solving (10)150

backwards in time. Instead of an initial condition, a ‘posterior’ condition on G is applied,151

and integration proceeds to temporally earlier values. For this case, we will always choose a152

posterior condition ofG(tf ) = 0. Notationally, G = G(x, t;xo, to), expressing the dependence153

of G on both the ‘source’ points, xo, to, and the ‘observation’ points, x, t.154

Now, we perform an integral of (9) over a volume V of the observation space, x, and over155

the time interval 0 to to, where 0 < to.156

K(xo, to)−
∫
x

GK(x, 0)dx+

∫ to

0

∫
S

(uGK − ν̂G∇K + ν̂K∇G) · ~ndSdt = (11)∫ to

0

∫
x

RGdxdt+

∫ to

0

∫
x

G∇ · ((ν − ν̂)∇K)dxdt

where S is the surface bounding the volume V . At this point, we exploit the available157

flexibility in boundary conditions. Eq. (11) describes how various kinetic energy sources158

contribute to the final kinetic energy at a point. From a physical perspective, we expect159

kinetic energy transport across the boundary S can contribute to the final kinetic energy160

inside S. This can occur by kinetic energy advection and viscous exchange across S. Both161

of these appear in (11) multiplied by G. We therefore choose to apply ∇G · ~n = 0, i.e.162

homogenous Neumann boundary conditions, to G, thus eliminating the underlined term163

from (11) and preserving the aforementioned physical effects.164

Suppose first V is a closed domain. With this, and a rearrangement of terms, we obtain165

K(xo, to) =

∫
x

G(x, 0;xo, to)K(x, 0)dx+

∫ to

o

∫
x

R̂Gdxdt (12)

where166

R̂ = R +∇ · ((ν − ν̂)∇K)

as the boundary fluxes all vanish.167

Eq. (12) illustrates how the kinetic energy at location xo and time to has been con-168

structed. The first term on the right hand side represents the ‘initial’ kinetic energy, K(x, 0)169

that ends up at (xo, to). The volume defining the impact of this K(x, 0) contribution de-170

pends on the development of G from to. The last term involves the internal fluid sources171

of kinetic energy and how they have contributed to K along the trajectory that eventually172

ends up at xo. Eq. (12) provides a full deconstruction of the kinetic energy in the basin,173

regardless of spatial inhomogeneities in the flow.174
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If V is an open domain or a subdomain of a full, closed basin, (12) is augmented by175

advective and diffusive fluxes of kinetic energy across the subdomain boundary, to the extent176

they are involved as measured by G. These vanish identically in the presence of doubly-177

periodic conditions, which will describe our application in this manuscript. But even for the178

most general case, boundary contributions can be made small by choosing a domain large179

enough that advection and diffusion do not have time to reach the boundaries. We will180

proceed here ignoring boundary contributions.181

The clearest interpretation of this formula occurs if G, defined in (10), measures purely182

Lagrangian trajectories, which occurs in the limit ν̂ = 0. For the remainder of this paper,183

we will continue with ν̂ = ν both for simplicity and because our numerical application will184

employ a very small value for ν. We have also checked that our results are insensitive to185

ν̂ < ν. It is in the nearly Lagrangian nature of (12) that the present approach somewhat186

resembles that of Nagai et al. (2015) and Shakespeare and Hogg (2017). K. Srinivasan has187

also alerted us to early contributions by Kraichnan (Kraichnan (1964); Kraichnan (1967)) in188

which a Green’s function based analysis of turbulence was employed. There are similarities189

in our approaches but the objectives our studies differ. Kelley et al. (2013) also explored the190

coarse graining decomposition in Aluie et al. (2018) in a Lagrangian setting with a focus on191

Lagrangian Coherent Structures.192

2.4. Cross-scale Contributions to Kinetic Energy193

We now compute how energy is transferred between various length scales. These ex-194

changes become more complicated whenK(xo, to) is strongly inhomogeneous and anisotropic,195

as is typical in the ocean. In this and the next subsections, we will build to a formal state-196

ment of cross-scale transfers in several steps, proceeding from a statement valid at a single197

point to one averaged over a specified volume.198

As a first step, consider a ‘filter’ applied to K(xo, to), i.e.199

KL(x1, to) =

∫
xo

K(xo, to)fL(xo − x1)dxo (13)

where fL is a filter associated with a length scale, L, and fixed at location x1. What the200

filter might be is a question deserving discussion, because the filtering will be carried out in201

physical space. For realistic problems, physical space typically contains a lot of irregularity:202

examples are complex lateral boundaries and major topography that can extend through203

domains at given depths and reach up to the surface. Any useful filter must contend with204

these features. Guidance about the filters can be obtained from the simplest case of an205

unbounded domain without interior obstacles. In that case, as we argue below, the obvious206

choices are trigonometric functions. At a more fundamental level, these work because they207

are a collection of functions forming a complete set due to their being the eigenfunction,208

eigenvalue solutions to the Helmholtz equation in an unbounded domain. We argue in209

Appendix A basis functions constructed from the Helmholtz equation with homogeneous210

conditions on S, the boundary of the domain V , will for complex domains provide a collection211

of functions with the desired properties. We stress here, however, that Appendix A is not212

exploited in the present paper, but serves as a procedure in need of further examination.213

7
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But whatever the filter is, an important point is that the filter works on the ‘source214

points’ (xo) of the Green’s function. Operating on (12), we obtain215

KL(x1, to) =

∫
x

GLK(x, 0)dx+

∫ to

o

∫
x

RGLdxdt (14)

where216

GL(x, t;x1, to) =

∫
xo

G(x, t;xo, to)fL(xo − x1)dxo (15)

We can similarly filter (10) to show217

∂

∂t
GL +∇ · uGL = −∇(ν · ∇GL)− fL(x− x1)δ(t− to) (16)

We want the filtering to decompose K(x1, to) completely into scale dependent informa-218

tion, i.e.219 ∫ ∞
L=0

KL(x1, to)dL = K(x1, to) (17)

Employing (13) in (17), it is simple to show220 ∫ ∞
L=0

fL(xo − x1)dL = δ(xo − x1) (18)

where δ is the Dirac delta function1. A classic result from the theory of generalized functions221

is222 ∫ ∞
−∞

e−2πk·(xo−x1)dk = Π3
i=1

∫ ∞
−∞

e−2πki(xi,o−xi,1)dki = δ(xo − x1) (19)

where the index i denotes dimensions and Π implies multiplication. Working now with one223

of the dimensions, suppressing the subscript i, breaking the integral into real and imaginary224

parts and using symmetry implies225

2

∫ ∞
o

cos(2πk(xo − x1))dk = δ(xo − x1) (20)

Last, we employ the relation between wavenumber and wavelength, k = 1/L, to obtain226

2

∫ ∞
o

cos(2π(xo − x1)/L)

L2
dL = δ(xo − x1) (21)

which effectively defines our original filter, fL, for a single spatial dimension227

fL(xo − x1) = 2
cos(2π(xo−x1)

L
)

L2
(22)

To filter over a group of length scales Lx, Ly, Lz in three dimensions, one employs the228

product of (22) appropriate to each dimension. The quantity KL(x1, to) represents the229

energy resident in K(x1, to) between the length scales L and L+ δL.230

1This property of the basis set is essential to their role in filtering. We will revisit it in Appendix A
when developing more general basis sets.
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2.5. Band Pass Filtering of Final Kinetic Energy231

The second step in formulating cross-scale transfers is to represent the energy at x1232

resident between scales of Lj and Lk by suitable integration over length scales. For example,233

the energy at scales Lj and greater becomes (again working in one dimension)234

κ∞Lj(x1, to) =

∫ ∞
Lj

KL(x1, to)dL

=
2

Lj

∫ ∞
−∞

sinc(2π
(xo − x1)

Lj
)K(xo, to)dxo (23)

where235

sinc(x) =
sin(x)

x
(24)

is the well known ‘sinc’ function, often found in signal detection applications. The remainder236

of the energy at shorter lengths is237

κLjo = K(x1, to)− κ∞Lj(x1, to) (25)

Analogous to (15), we define238

ΓLkLj (x, t;x1, to) =

∫
xo

∫ Lk

Lj

fL(xo − x1)dL G(x, t;xo, to)dxo (26)

and find that it is governed by239

∂

∂t
ΓLkLj +∇ · uΓLkLj = −∇ · (ν∇ΓLkLj )− γ

Lk
Lj

(x1 − x)δ(t− to) (27)

where240

γLkLj (x1 − x) =

∫ Lk

Lj

fL(x1 − xo)dL (28)

This more general formulation anticipates that the length scale dependent basis functions241

needed to probe the scale dependent structure of K in general domains will not typically be242

trigonometric functions. See the Appendix A for more discussion. We will frequently refer243

to γLkLj in the following as a ‘filter’.244

The construction of the kinetic energy at x1 between Lj and Lk can be written245

κLkLj (x1, to) =

∫
x

ΓLkLjK(x, 0)dx+

∫ to

o

∫
x

R(x, t)ΓLkLj dxdt

where246

κLkLj (x1, to) =

∫ Lk

Lj

KL(x1, to)dL =

∫ Lk

Lj

∫
x

K(x, to)fL(x− x1)dxdL (29)

Note that (29) is a Lagrangian statement of kinetic energy exchange, in that the modified247

Green’s function ΓLkLj tracks fluid movements between the final time t = to and the initial248

time t = 0. It is also possible to use this formalism to render an Eulerian statement about249

kinetic energy exchange. This is discussed in Appendix B. We continue here with the250

Lagrangian formalism, such having been less discussed in the literature (but see Kelley et al.251

(2013)).252
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2.6. Band Pass Filtering of Kinetic Energy Sources253

The third step addresses the cross scale exchanges involved in the creation of κLkLj . Con-254

sider the ‘initial’ kinetic energy, appearing as the first term on the right hand side of (29).255

Exploiting (18), this quantity can be rewritten256

K(x, 0) =

∫
λ

Kλ(x, 0)dλ = ΣN
i=0κ

Li+1

Li
(x, 0) (30)

where the interval L = 0 to L = ∞ has been broken into N + 1 separate intervals and,257

equating Lj to Li and Lk to Li+1, κ
Li+1

Li
is as in (29). Rearranging yields258 ∫

x

ΓLkLj (x, 0;x1, to)K(x, 0)dx =

ΣN
i=0

∫
x

ΓLkLj (x, 0;x1, to)κ
Li+1

Li
(x, 0)dx (31)

Eq. (31) expresses how the scale dependent decomposition of the initial kinetic energy259

contributes to the kinetic energy between Lj and Lk found in the final state. To the extent260

that the quantity261

K
Lk,Li+1

Lj ,Li
(x1, 0) =

∫
x

ΓLkLj (x, 0;x1, to)κ
Li+1

Li
(x, 0)dx (32)

does not vanish for Li, Li+1 outside the range Lj to Lk, there has been cross-scale transfer262

of kinetic energy. This calculation can be repeated for each band Li to Li+1 to obtain a263

complete breakdown of the cross-scale transfers from the initial data to the final. Further,264

this computation can be performed for any time between the initial and final times, thus265

providing a time series of cross-scale kinetic energy exchanges. Similar decompositions into266

scale dependent contributions can be formed from the boundary terms and the source terms267

in R.268

These lead to a complete reconstruction of the kinetic energy at any given scale from269

large and small scale structures occurring along the quasi-Lagrangian fluid path which, in270

turn, are measures of energy transfers across scales. Examining the time series of these271

terms identifies critical points in time when transfers are at their greatest. This information,272

along with knowledge of the spatial Green’s functions structures at those times, identifies273

the particular events associated with the transfers. A relatively complete overall picture of274

the energetics of the fluid can be developed.275

2.7. Area Averaging276

At this point, cross-scale transfers have been formally identified, with perhaps the strongest277

restriction being that they apply to the development of kinetic energy at a given point. How-278

ever, it might prove useful to have such a statement averaged over a given area. For example,279

for the case of merging vortices, one might be interested in an averaged statement of the280

construction of the energy averaged over the area of the merged vortex. We will pursue this281

goal in the next section. For now, we note that this once again reduces to an operation282

on the source points of the Green’s functions and can be obtained following the procedures283

described above.284
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Suppose that we want a simple ‘top-hat’ averaging of the results over a given domain,285

such as would be obtained according to286

κLkLj (ξ, to) =

∫
x

ΠQ(x1 − ξ)κLkLj (x1, to)dx1 (33)

where ΠQ is the top-hat function defined by287

ΠQ(x) = 1
Q2 (x ε A) (34)

= 0 otherwise (35)

with A a square centered on x = 0 of area Q2. Following the steps outlined previously leads288

to289

κLkLj (ξ, to) = ΣN
n=o

∫
x

ΦLk
Lj

(x, 0; ξ, to)κ
Ln+1

Ln
(x, 0)dx

+ΣN
n=o

∫ to

o

∫
x

ΦLk
Lj

(x− ξ, t)ρLn+1

Ln
(x, t)dxdt (36)

where ρ
Ln+1

Ln
is the analog to (29) for the energy source terms and we have assumed the290

boundary contributions vanish. The quantity ΦLk
Lj

is governed by291

∂

∂t
ΦLk
Lj

(x, t; ξ, to) +∇ · u ΦLk
Lj

+∇ · (ν∇ΦLk
Lj

) = −πLkQ,Lj(x− ξ)δ(t− to) (37)

where292

πLkQ,Lj(x− ξ) =

∫
x1

ΠQ(x1 − ξ)γLkLj (x1 − x)dx1 (38)

We will mostly work with the ‘modified’ Green’s function ΦLk
Lj

in this paper and will call293

πLkQ,Lj a sampling function.294

Although not pursued here, a similar approach can be applied to the potential energy295

equation. The details appear in Appendix C. Recall kinetic energy connects to potential296

energy through pressure work.297

To summarize, (36) equates the scale dependent content of the kinetic energy between298

lengths Lj and Lk, averaged over the A (see (34)), to contributions from the initial kinetic299

energy, pressure work and dissipation.300

3. Application to Merging Vortices301

We now apply the previous methodology to a classical GFD problem; namely, the merger302

of like-signed vortices. We choose this as a first test case because this scenario is usually303

identified with the upscale cascade of rotating flows. In this sense, we know what the answer304

should be, broadly speaking, and so can judge the utility of the procedure. In addition, we305

can examine what new information is provided by this approach.306

For this purpose, we used the recently developed MOM6 model2. This model includes307

a number of modern features: most importantly it can be deployed in a purely isopycnal308

2https://github.com/NOAA-GFDL/MOM6
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configuration. There are relatively minor modifications to the kinetic energy equation in this309

setting, all of which are detailed in Appendix D. Perhaps the most significant details are310

that the Green’s function equation is modified by the appearance of layer thickness in the311

viscous term, and the velocity field must be treated as compressible.312

Our model consisted of a four layer f -plane fluid, with three subsurface interfaces, in a313

flat bottomed basin of 4000m total depth. The free surface and third layer interface were314

initially taken as flat, and the second layer, bounded by the first and second interfaces, was315

seeded with an organized distribution of 200m thick anomalies. All initial velocities were316

assumed to vanish. As expected, after a very short time adjustment involving gravity wave317

radiation, the fluid followed a classical path of like-signed vortex merger and opposite signed318

vortex propagation towards a final state of a single cyclonic-anticyclonic pair. Along the319

way, smaller vortices are swallowed by larger ones and a recognizable upscale energy cascade320

takes place. Examples of the fluid state at days 50, 135 and 220 in year 2 of the simulation321

appear in Fig. 3 in which this sequence is evident.322
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Figure 3: Three separate model states from a simulation of the MOM6 model with merging vortices. The
top panels are of second layer thickness at days 50 (left) and 135 (right) and the bottom row shows day 220.
The quadrant enclosed by the heavy black lines in the upper panels contains two cyclonic vortices in the
process of merger. The smaller square centered on the red ‘X’ at day 220 encloses the merged vortex and
indicates the region over which the analysis takes place.
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Numerical details of the simulation appear in Table 1; here we emphasize that the result-323

ing internal deformation radii, 34km, 19km and 14km, are representative of the open ocean.324

The experiment was simulation for a total of four years, from which we focus on the analysis325

of days 50 to 220 from the second year of the simulation. The sequence in Fig. 3 comes326

from that interval, and we have focussed our attention on the merger event occurring in the327

lower, left hand quadrant outlined by the black lines in the upper two panels. Qualitatively,328

the two vortices near the bottom of panel (a) on day 50, with radial length scales of roughly329

100km, merge into the single, larger vortex seen in panel (c) at day 220. The smaller square330

in panel (c) encloses the region over which averaging takes place (see (33)).331

Quantity Parameter Value
zonal grid scale dx 4000m
meridional grid scale dy 4000m
time step dt 300s
zonal grid points nx 384
meridional grid points ny 384
Coriolis parameter f 10−4s−1

gravity g 9.8m/s2

layer 1 density ρ1 1025kg/m3

layer 2 density ρ2 1026.5kg/m3

layer 3 density ρ3 1027.5kg/m3

layer 4 density ρ4 1028kg/m3

total depth H 4000m
lateral viscosity ν 40m2/s

Table 1: Numerical parameters and values.

Closing budgets as we are attempting to do here requires high accuracy, especially in332

the solution of the adjoint equation. MOM6 does not have an adjoint option, so the fol-333

lowing procedure was adopted. Output from the merger experiment of horizontal velocity334

components and thickness were catalogued at intervals of one day, from a simulation that335

used time steps of 300s. The computational domain was doubly periodic and f -plane, so we336

developed a spectral model for the adjoint equation in MATLAB. We adopted a comparable337

300s time step for the adjoint equation which, of course, required knowledge of the model338

state at comparable temporal resolution. This was obtained for any given one day interval339

by using the six days of MOM6 data centered on that day to interpolate via cubic splines the340

velocities and thickness to the required adjoint model times. The interpolated velocity and341

thickness data were used to compute kinetic energy and dissipation at the mass points of the342

model grid, and the pressure work at that point was estimated as the residual in the kinetic343

energy equation. Our estimates were checked against direct estimates of the pressure work344

which could be computed using the daily archived fields and the two were found to agree345

to a high degree of accuracy. In this way, we developed time series of the various inputs to346

the kinetic energy equation that balanced to machine precision, which in turn allowed us to347

balance our adjoint based kinetic energy budgets.348

As is evident in (37), the evolving modified Green’s functions are related to Lagrangian349
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measures of fluid displacement. This point is emphasized in Fig. 4 which compares the350

Green’s functions corresponding to the beginning and the end of our experiment, i.e. to351

days 50 (left) and 220 (right). Comparatively speaking, the left hand side looks considerably352

more disorganized than the right hand side. This reflects the strongly interactive nature of353

the evolving fields, which moves particles considerable distances. The distribution on the354

left represents the density of the particles over the entire domain on day 50 that eventually,355

at day 220, end up in the square on the right. The multiple maxima appearing on the left356

are indicative of the primary merging vortices that between days 50 and 220 form the final357

vortex seen in Fig. 3.358
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)

0
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1000
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Figure 4: The modified Green’s functions, defined by (37), from our numerical experiment at day 50 (left)
and day 220 (right). The left panel essentially shows the distribution of the particles that end up in the
square on the right. CI=.05e-4

Fourteen different sampling functions, π
Li+1

Q,Li
(see (38)), were developed, each designed to359

measure the average kinetic energy contained in the region indicated in Fig. 3 between two360

lengths, ranging from the full domain size (1536km) down to the grid scale. We used the361

first filter to remove the domain average, i.e.362

πLkQ,Lj = 1/Ao (39)

where Lj = 0km, Lk = 1536km and Ao is the domain area. Intermediate lengths were set363

to (L2 → L13)=1200, 1000, 800, 700, 600, 500, 450, 400, 350, 300, 250 and 150km. The364

adjoint problem appropriate to each of these sampling functions was solved to obtain fourteen365

different sets of Φ
Li+1

Li
functions, and the kinetic energy, pressure work and dissipation fields366

were filtered using each of the associated filtering functions. This resulted in a 14 × 14367

matrix for each of the kinetic energy and energy input fields, detailing how the various scale368

dependent quantities contributed to the final kinetic energy at a given time. We will refer to369

the results in terms of the bands associated with the initial Φ
Li+1

Li
functions, as spelled out370

in Table 2.371
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Band No Limits
1 Basin Average
2 1200-1536km
3 1000-1200km
4 800-1000km
5 700-800km
6 600-700km
7 500-600km
8 450-500km
9 400-450km
10 350-400km
11 300-350km
12 350-300km
12 300-350km
13 250-300km
13 150-250km
14 0-150km

Table 2: Band numbers and associated length scales.

For the purposes of this paper, we consider the transition from day 50 to day 220, i.e.372

over the entire interval of the vortex merger. We compare initial and final kinetic energy373

decompositions κLio , where374

κLio = Σi
oκ

Li
Lo=0 (40)

as functions of length scale in Fig. 5. Note that some of the values are not positive. This is a375

consequence of (17), which insures that when summed all filtered contributions converge on376

the value of the energy in physical space. What is guaranteed to be positive is the final sum.377

Contributions from individual length scale bands can contribute negative values to achieve378

this goal.379

The red line is κLio of the initial kinetic energy within the square seen in Fig. 3(c).380

Although relatively flat, it does exhibit a peak in the range L = (400 − 600)km which381

reflects the two vortices present at day 50. While indicative of the early energy distribution,382

a more telling decomposition comes from that found by subsampling the field according to383

the day 50 Green’s function (see Fig. 4). This appears in the green line, which shows a384

weak dip in values at small length scales, followed by a steady growth. The final, blue, line385

is the decomposition associated with the day 220 state inside the square in Fig. 3(c). It is386

clear that, compared to both other curves, the kinetic energy has both grown considerably387

in amplitude, particularly at large L, which is consistent with an upscale cascade.388

A more detailed view of the cross scale exchanges is shown in Fig. 6. Here we plot the389

decomposition of the large scale (band 2), intermediate scale (band 8) and small scale (band390

12) kinetic energy in the upper three panels. Each plot consists of 43 separate values. The391

first value is the band passed kinetic energy at day 220. This is followed in the next 14392

slots by the initial kinetic energy contributions from the various bands. Those values are393
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distinguished by a magenta axis. The next 14 slots are the various band passed contributions394

from the pressure work (cyan axis) and the final 14 slots (blue axis) are the contributions395

from dissipation. Each group of 14 contributions is also separated by a vertical black line.396

The solid black horizontal lines in each slot are the values of the contributions, and the red397

line starting from the second slot shows the cumulative sum of the values. As shown in (29),398

the sum of all the inputs should match the final band passed kinetic energy; equivalently,399

the final red value at slot 43 should match the black line in the first slot in amplitude. Note400

that this holds in all three plots. Finally, the three dashed green vertical lines mark the band401

corresponding to the band of the final kinetic energy for each of the initial kinetic energy,402

pressure work and dissipation. Bands left of the green line correspond to larger length scales403

and those to the right to shorter length scales.404

The bottom panel connects the band number on the y-axis with the length scale range405

of that band on the x-axis.406
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Figure 5: Initial length scale structure of the kinetic energy, κLi
o , compared to final length scale structure.

The red line is based on the initial kinetic energy as sampled by the Lagrangian field in Fig. 4 (left), the
green line is based on the initial kinetic energy inside the square in Fig 4 (right) and the blue line is based on
the final kinetic energy inside the square in Fig. 4 (right). The final field (blue line) exhibits clear evidence
of kinetic energy growth at longer scales.
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3.1. Large Scales407

For example, consider Fig. 6a. The first slot is occupied by408

κL2
L1

(x, to) =

∫
xo

K(xo, to)π
L2
Q,L1

(x− xo)dxo (41)

which is the band 2 kinetic energy in the final state, with a value of roughly 5.5×10−3m2/s2.409

A plot of the physical space structure of this quantity appears in Fig. 7d. The kinetic energy410

field at day 220 from which this filtered content is extracted appears above it in Fig. 7b.411

The next 14 slots, from slot 2 to 15, are occupied by412 ∫
xo

κ(x, 0)
Ln+1

Ln
ΦL2
L1

(x, 0,xo; to)dxo (42)

where413

κ(x, 0)
Ln+1

Ln
=

∫
x1

K(x1, 0)γ
Ln+1

Ln
(x− x1)dx1 (43)

is the initial kinetic energy content contained in band n (see Table 2). The dashed green414

line marks the third slot, which is the second band of the initial kinetic energy. This is415

the same band appearing in the first slot, and a physical space picture of this transfer term416

appears in Fig. 7c. The day 50 kinetic energy field from which this term is extracted by (42)417

appears above it in Fig. 7a. It is clear from comparing the black line in the green dashed418

slot to the black line in the first slot from fig. 6a that this band has grown in kinetic energy419

over the experiment, from an initial value of 1.3 × 10−3m2/s2 to roughly 5.5 × 10−3m2/s2.420

The values in the remaining slots in the kinetic energy zone represent the contributions from421

shorter length scales in the initial kinetic energy to the band 2 final kinetic energy structure.422

The next four values in the initial kinetic energy zone are positive, indicating a transfer of423

smaller scales upward. The remaining slots are filled with very small values. The cumulative424

red line indicates the total transfer to band 2 final kinetic energy from initial kinetic energy425

is roughly 3.3 × 10−3m2/s2, with the biggest single contributor being the local band 2. In426

summary, this plot suggests an upscale kinetic energy to kinetic energy cascade.427

The slots from 16 to 29 are occupied by428 ∫ to

o

∫
x

(−pw(x, t)
Ln+1

Ln
)ΦL2

L1
(x, t,xo; to)dxodt (44)

where429

pw(x, t)
Ln+1

Ln
=

∫
x1

(upx + vpy)(x1, t)γ
Ln+1

Ln
(x− x1)dx1 (45)

is the pressure work performed in band n at time t of the calculation. The green dashed430

line falls in slot 17 because that band corresponds to the band appearing in the first slot.431

The values in the remaining slots represent contributions to band 2 final kinetic energy from432

other bands in the pressure work occurring along the fluid trajectory. As can be seen from433

the red lines, pressure work is considerably more active across the bands than kinetic energy.434

The green dashed slot contains a negative value, indicating a net loss of kinetic energy435

by the pressure work in this band. However the next several slots are positive, indicative436
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of an upscale cascade of energy due to pressure work, and in total, these transfers are437

considerably stronger than the in-band loss. In total, pressure work elevates kinetic energy438

by 3.8 × 10−3m2/s2, and is roughly 3 − 4 times larger than the kinetic to kinetic transfer,439

with most of the transfers coming from smaller scales. This result is somewhat surprising,440

as most previous studies have focussed on kinetic to kinetic transfers. Contributions from441

other sources, such as pressure work, have not received as much attention. Here they are442

dominant.443

Last, we come to the dissipative contributions, appearing in slots 30 to 43. Here, the444

surprise is that the net dissipative effects acting on band 2 are relatively large. Over all445

scales, the net effect is slightly less than −1.3× 10−3m2/s2, although the total is dominated446

by the in-band, band 2, dissipative impact of slightly more than −1.3 × 10−3m2/s2. The447

reason this is unexpected is that band 2, from 1536 − 1200km, is a large scale band, and448

dissipation is dominantly a small scale process. This is certainly true as well in the present449

simulation, as is seen in Fig. 8a of the modeled dissipation field at day 135. However,450

dissipation is broadly distributed and occurs at locations governed by the large scale, so that451

when filtered, dissipation imprints importantly on the evolution. This appears in Fig. 8b452

which is the dissipation field at day 135 filtered through band 2.453

3.2. Intermediate and Small Scales454

Band 8, in Fig. 6b, loses kinetic energy over the simulation, as can be seen by comparing455

the black line in the first slot with that in the first green dashed slot. However, the scale of this456

loss is close to two orders of magnitude smaller than those described for band 2. Essentially,457

this is an inert band in regards to kinetic to kinetic exchanges. Across the bands, initial458

kinetic inputs to final kinetic energy are quite small, at a net value of 3× 10−6m2/s2. Note459

however that pressure work is quite active across all bands. Larger scale bands, to the left460

of the green dashed line in the pressure work zone, tend to be positive. This is indicative461

of a down-scale transfer of energy from larger scales to band 8. However, smaller scales462

tend to be negative in amplitude, and overall comparable in size to the contributions from463

the larger scales. The net effect of pressure work across all bands, is negative, at a value464

of −1.7 × 10−5m2/s2, indicative of a net transfer to small scales. Band 8, with respect to465

pressure work, acts like a pass-through, allowing energy from larger scales to move through466

to smaller scales, while adding a small amount to the net. In this intermediate scale band,467

the principal signal is a down-scale contribution to kinetic energy.468

Finally, band 12, in Fig. 6c, is also a band of relatively weak energy transfers, if still469

stronger than band 8. Overall, there is a stronger kinetic energy loss at these small scales,470

roughly −5.5 × 10−5m2/s2, most of which, −4.0 × 10−5m2/s2 is accounted for by losses to471

larger length scales. This is indicative of a kinetic to kinetic upscale transfer. Once again, it472

is seen the pressure work to kinetic energy transfers are far more active. While the net effect473

is relatively small, −1× 10−5m2/s2, it is the result of large transfers of both signs across the474

length scale spectrum. A clear pattern does not emerge. Losses and gains to other length475

scale bands of both larger and small character occur. Perhaps the safest interpretation is476

that the weak values involved in this band indicate it responds erratically to the conditions477

imposed on it by the energetically dominant larger length scales.478

Time histories of two of the pressure work energy transfers is shown in Fig. 9, i.e. those479

for band 2 to band 2 and for band 3 to band 2. These are amongst the most active pressure480
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work bands seen in Fig. 6 and, despite their similarity in length scales, show opposite trends.481

The band 2 to band 2 transfer appears on the left. Early in the experiment, pressure work482

adds to kinetic energy, but the trends reverses around day 120, and pressure work depletes483

kinetic energy strongly to day 220. The last 100 days are thus associated with a large scale484

tendency for flow to be directed towards high pressures and away from low pressures. Fig.485

9b, the pressure work contribution of band 3 to band 2, shows the opposite trend. Pressure486

work persistently builds kinetic energy through most of the experiment, except for the period487

from day 100 to day 120. Towards the end, the net levels to a constant value, equivalent to488

the cessation of pressure work contributions between bands.489

These tendencies are explained in part by examining the anatomy of the pressure work490

contributions. For this we show in Fig. 10 the pressure work field as it appears to band 2491

at day 200, for the two bands 2 and 3. On the left is the pressure work as seen by band492

2, having been filtered through band 2. Note that the structure is dominated by relatively493

large scale negative values. These are zones dominated by cyclones, and hence low pressures.494

The negative pressure work values indicate flows away from the low pressure centers, which495

is a flow field designed to bring the lows together. As a result, the negative pressure work496

at largest scales is a signal of vortex merger. In contrast, the pressure work filtered through497

band 3, as it appears to band 2 appears on the right. Here, the distribution consists much498

more evenly of both highs and lows of comparable magnitude. Day 200 is relatively late in499

the merger event, and is a point where on these scales of band 3, the fields are becoming500

relatively symmetrized. As a result, the net pressure work from this band is quite small,501

consistent with the late parts of the time series in Fig. 9 (right), where the time history of502

integrated pressure work has leveled off.503

4. Summary504

A new method for computing cross-scale energy transfers in fluid flows has been described505

and applied to a well-known example. The technique has both Lagrangian and Eulerian506

forms. In this paper, we mostly examine the former method, which exploits the Lagrangian507

nature of kinetic energy evolution to relate kinetic energy at any one location and time508

to its flow history. The Lagrangian history is computed by solving an adjoint equation509

obtained by a classical Green’s function approach. The scale content of the final kinetic510

energy structure can be obtained by solving a filtered version of the adjoint equation, and511

projecting the kinetic energy field onto the result. In addition the same filter used on the512

Green’s function equation can be used to diagnose the scale dependent inputs to the kinetic513

energy evolution, such as pressure work and dissipation, in a relatively straightforward way.514

This leads rather naturally to a quantification of how energy from one band of length scales515

transfers to another during the nonlinear evolution of the flow. The procedure also allows for516

a diagnosis of the nature of the energy transfers, eg kinetic to kinetic or kinetic to pressure517

work, as well as examination of how the transfers are structured in time and space. While we518

have here focussed on kinetic energy, the same approach can be applied to potential energy519

evolution.520

We have applied the procedure to the classic problem of vortex merger in a stratified fluid.521

The well known MOM6 model was deployed in a four layer isopycnal configuration and with522

an initial condition consisting of a sequence of undulations in second layer thickness. The523
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system evolution proceeds with like signed vortices merging and opposite signed vortices524

pairing up and propagating. We analyzed a particular merger event in detail.525

The subsequent analysis showed the expected result that kinetic energy exhibits an up-526

scale cascade; however, the procedure also illustrates several somewhat novel aspects about527

merger. Perhaps most significantly, the primary energy transfers involve pressure work to528

kinetic energy exchanges, rather than kinetic to kinetic energy exchanges. This result com-529

plements several published studies of upscale energy transfers which have focussed on Fourier530

transforms of the nonlinear advection terms in the momentum equations by emphasizing the531

role played by pressure work. Dissipation also emerged as a surprisingly large effect on larger532

scale energy exchanges. This was due in part to the tendency for the larger scale flow to or-533

ganize regions of small scale dissipation, so that the large-scale projection of dissipation was534

substantial. Also, several of the intermediate ranges in an integral sense were relatively inert,535

in that initial and final kinetic energies were often quite similar; however those same ranges536

were found to be very dynamically active, and acted as pass-throughs, receiving potential537

energy from smaller scales and passing them along to larger scales. Finally, the diagnoses538

identify the critical points in time when exchanges are at their peak, and allows for an exam-539

ination of the events associated with the exchanges. Spatial information about the nature540

of the exchanges is also provided and allows for a diagnosis of the involved mechanisms.541

The example problem considered here is highly idealized, with an isotropic setting, doubly542

periodic boundaries and an unobstructed geometry. The promise of the technique, however, is543

that it potentially generalizes in a straightforward way to realistic ocean simulations, in which544

the flows are highly anisotropic and inhomogeneous, and the domains are often geometrically545

complex. The examination of such regions, such as the Gulf Stream, the Kuroshio and other546

major ocean currents is of importance to the understanding of the global ocean energy cycle.547

It will be of great interest to see what new light this method might cast on such regions.548
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Appendix A. Basis Functions for Arbitrary Domains562

Trigonometric functions form the obvious filtering basis set for unbounded and simple563

domains. Unfortunately, such domains are rarely associated with realistic problems, so it564
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is necessary to consider a generalization when filtering a variable in a realistic setting. The565

purpose of this appendix is to suggest one method to develop an appropriate basis set. We566

stress that the example in the main part of the paper uses classical trigonometric functions567

and doesn’t involve any of the more elaborate filters computed here.568

The key property of trigonometric functions that leads to their utility is (18). In turn, the569

demonstration of this property for trigonometric functions depends on their orthonormality,570

i.e. that571 ∫ ∞
−∞

fn(x)fm(x)dx = δn,m (A.1)

where fn(x), fm(x) are two trigonometric functions characterized by eigenvalues n, m and572

δn,m is the Kronecker delta function. We wish to retain these properties while developing573

basis functions appropriate to more general settings.574

It is widely recognized that orthonormal functions are often developed from dynamical575

equations. Here we make the conscious decision to avoid any basis set developed from dy-576

namical considerations. The reason for this is we want to make a scale dependent statement577

only, and not a statement about any preconceived dynamical content. To this end, consider578

the classical Helmholtz equation579

∇2ψ + k2ψ = 0 (A.2)

In the presence of homogeneous boundary conditions, the solution of this equation is ψ = 0,580

except possibly for special values of the constant k, making it an eigenvalue problem. By581

construction, the eigenvectors of (A.2) are the eigenvectors of the Laplacian operator. If one582

is in possession of two separate eigenvectors of (A.2), say ψm and ψn, they are automatically583

orthogonal, as we now demonstrate. First, insert one of these eigenvectors into (A.2) and584

multiply by the other585

ψn∇2ψm + ψnk
2
mψm = 0 (A.3)

where km is the eigenvalue associated with ψm. Integrating over the domain in question586 ∫
S

(ψn∇ψm − ψm∇ψn) +

∫
V

(ψm∇2ψn + ψmk
2
mψn)dV = 0 (A.4)

where S is the domain boundary enclosing the integration volume V . In the presence of587

homogeneous boundary conditions and introducing the remaining eigenvalue kn588

(k2m − k2n)

∫
V

ψmψndV = 0 (A.5)

Eq. (A.2) being a Sturm-Liouville equation possesses an infinity of eigenvector/eigenvalue589

pairs that can be ordered from smallest to largest so, in general, the factor multiplying the590

integral on the left hand side of (A.5) does not vanish. Thus, by construction, the eigenvalues591

are orthogonal. Enforcing592 ∫
V

ψ2
mdV = 1 (A.6)

insures they are also suitably normalized. Further classical analysis shows arbitrary func-593

tions in V can be represented by an appropriate superposition of the eigenfunctions (in a594
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least squares sense) where the coefficients of the representation are computed by exploiting595

orthonormality.596

In regards to the length scale, L, we would associate with any particular eigenfunction,597

the form of the Helmholtz equation suggests598

L ≈ k−1 (A.7)

We will see in multiple dimensions that this simple relationship is problematic.599

While for irregular domains with islands and topography, the solutions cannot generally600

be written down, they can be developed in relatively straightforward numerical ways. As601

an example, consider the domain shown in Fig. A.11, consisting of a single circular island602

inside of an otherwise square domain. The Laplacian operator is discretized using a five point603

stencil. Periodic boundary conditions are placed on the outer edge of the domain and the604

eigenfunctions are required to vanish on the island boundary. These are conditions consistent605

with the orthogonality of the resulting Helmholtz solutions and are entirely reflected in the606

details of the stencil coefficients. In principle, the coefficients can be formed into a nx×ny by607

nx× ny square matrix, where nx, ny are the lengths of the domain in the east-west, north-608

south directions, respectively. For the present calculation, nx = ny = 70 and grid spacing609

dx, dy = 5m is isotropic. In fact, this does not account for the island, inside of which are610

several of the regularly spaced grid points, but which represent locations inaccessible to the611

fluid. It is necessary to remove those points, resulting in slightly smaller matrix, the regular,612

pentadiagonal structure of which is then interrupted.613

This matrix can be fed into a standard eigenvalue extraction routine; we used the function614

‘eig’ in MATLAB. The gravest and tenth-most gravest eigenmodes appear in Fig. A.12;615

these are associated with eigenvalues k21 ≈ 10−4m−2 on the left and k210 ≈ 1.4× 10−3m−2, or616

equivalently Lk ≈ 200m (left) and L10 ≈ 52m (right). It is easy to associate a length scale617

of 200m with the former, but the latter also measures comparable length scales while being618

spatially considerably more complex. It is thus not straightforward to simply connect the619

eigenvalue size and the associated length scale. This is due to the multiple spatial dimensions620

involved in the analysis, and arises in the unbounded domain using simple trigonometric621

functions as well. For example, high wavenumbers in the meridional direction coupled to622

low wavenumbers in the zonal direction can be associated with eigenvalues very similar623

to comparable wavenumbers of intermediate values distributed symmetrically in the two624

directions. We recommend a different way to associate length scales to the analysis below.625

We now demonstrate these functions satisfy constraint (18). Exploiting orthonormality,626

we anticipate627 ∑
n

anψn(x) = δ(x− xo) (A.8)

where628

an = ψn(xo) (A.9)

The result of evaluating this formula using the present eigenfunctions appears in Fig. A.13(top629

left), where the source point xo = (50m, 150m), i.e. just south of the island. Clearly, we630

have reproduced to within domain discretization a Dirac delta function. The analysis in the631

main part of the paper, however, emphasized the use of integrals of filters between two length632

scales. We present in Fig. A.13(top right) the result of summing all the eigenfunctions below633
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a given eigenvalue. This corresponds to (28), in particular to γ
Lj
o for the 100th eigenvalue634

(k2100 ≈ .012). Cross sections of the sampling function on the dashed lines in Fig. A.13b635

appear in the two lower panels. Note that the sampling function γ100 avoids the island,636

as seen in Fig. A.13(bottom left), while maintaining a qualitative resemblance to the sinc637

function (Fig. A.13(bottom right)). The length scale L associated with the eigenvalue is638

roughly 90m, which corresponds well to the length scale of the sampling function, particu-639

larly as suggested by the distance separating the neighboring highest positive lobes seen in640

Fig. A.13. As suggested by this example, we recommend associating length scales L with641

sums of eigenfunctions corresponding to ranges of the eigenvalues.642

Clearly this technique, while promising, is in need of considerable study.643

Appendix B. Eulerian Kinetic Energy Exchanges644

This paper deals primarily with the Lagrangian version of the kinetic energy equation,645

somewhat in a manner reminiscent of Nagai et al. (2015) and Shakespeare and Hogg (2017).646

However, an Eulerian statement can be made as well and the formulation is outlined here.647

Starting with (29), the final time to is chosen to be very small, such that648

κLkLj (x1, to) =

∫
x

ΓLkLjK(x, 0)dx+ (

∫
x

R(x, t)ΓLkLj dx)to (B.1)

where we have neglected boundary contributions. Integrating (27) over a small time interval649

centered on to results in650

ΓLkLj (x, to;x1, to) = γLkLj (x− x1) (B.2)

so (B.1) can be rewritten651 ∫
x

∂

∂t
(ΓLkLjK(x, t))dx =

∫
x

R(x, t)ΓLkLj dx (B.3)

Using the chain rule converts (B.3) to652 ∫
x

(K
∂

∂t
ΓLkLj + γLkLj

∂

∂t
K)dx =

∫
x

R(x, t)ΓLkLj dx (B.4)

Finally, substituting with (26) and integrating by parts leads to653 ∫
x

γLkLj
∂

∂t
Kdx =

∫
x

γLkLj (−∇ · uK +∇ · (ν∇K) +R)dx (B.5)

The left hand side is recognized as the filtered version of the time rate kinetic energy change,654

and the right hand side breaks it up into advective, diffusive, pressure work and dissipative655

contributions. The filter γ
Ln+1

Ln
is independent of time, so the left hand side of (B.5) can be656

rewritten657 ∫
x

γLkLj
∂

∂t
Kdx =

∂

∂t

∫
x

γLkLjKdx =
∂

∂t
κLkLj (B.6)

Thus the Eulerian version of the present analysis concerns the time rate of change of the658

band passed kinetic energy. The kinetic energy appearing in the advective and diffusive659
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terms can be similarly decomposed, which in turn yield formulae expressing the exchange660

of kinetic energy between bands involving spatial operations on the filter. For example, the661

advective contribution becomes662 ∫
x

γLkLj (−∇ · uK)dx =

∫
x

γLkLj (−∇ · u
∫
λ

Kλdλ)dx (B.7)

After some algebra and modifying the order of integration663 ∫
x

γLkLj (−∇ · uK)dx =

∫
λ

∫
x

γLkLj u(x)

∫
xα

K(xα)∇fλ(xα − x)dxαdxdλ (B.8)

In this Eulerian view, advective contributions appear explicitly. This procedure is somewhat664

like that described in Aluie et al. (2018), although we work directly in kinetic energy rather665

than the momentum equations. Last, this result can also be obtained by filtering the Eulerian666

kinetic energy equation directly.667

Appendix C. Potential Energy668

Vertical buoyancy transport connects potential and kinetic energies, and this is intro-669

duced into (3) by adding and subtracting wpz, which yields670

Kt +∇ · uK = −∇ · up+ wb− ε+∇ · (ν∇K) (C.1)

where b is buoyancy and the velocity is fully three dimensional. For a linear equation of671

state, the quantity wb can be related to h = −bz via672

ht +∇ · uh = −wb+∇ · κ∇h+ 2κbz (C.2)

where κ is diffusivity.673

For a nonlinear equation of state, the choice for h of ‘dynamic enthalpy’ (Young (2010))674

h =

∫ P

Po

b

gρo
dP (C.3)

where ρo is a reference density, g gravity, P = −ρogz is static pressure and Po is a reference675

surface pressure, leads to a generalized form of (C.2). This equation involves a lot of terms676

and is not written down here.677

Note that (C.2) can be rewritten as678

ht +∇ · uh−∇ · κ∇h = χ (C.4)

where χ = −wb + 2κbz represents the ‘sources’ of potential energy. The form of (C.4) is679

identical to that of (4), so the previous analysis and results all apply to potential energy. If680

the fluid is modeled assuming identical diffusivity and viscosity (i.e. a Prandtl number of 1),681

the analysis in this paper can be applied to the sum of kinetic and potential energy. In any682

case, potential energy can always be analyzed separately from kinetic and the two connected683

through their common quantity, wb.684
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Appendix D. Isopycnal fluids685

If one works in a layered model, as the example in the main part of the paper, the686

momentum equations change slightly so, for example, the zonal momentum equation becomes687

ut + uux + vuy − fv = −Mx −
∇ · F x

h
(D.1)

where M is the Montgomery potential688

M = p− bz (D.2)

and F x represents the viscous fluxes of zonal momentum. Notation is otherwise the same689

as in (1). The kinetic energy equations formed from these momentum equations, employing690

the usual statements for viscous fluxes, is691

Kt + uKx + vKy = −uMx − vMy − ε+
1

h
∇h · (hν∇hK) (D.3)

where h is layer thickness and the subscript ‘h’ denotes ‘horizontal’. Following the Green’s692

function formalism eventually leads to693

K(xo, to) =

∫
x

G(x, 0;xo, to)K(x, 0)dx+

∫
t

∫
x

G(x, 0;xo, to)R(x, 0)dxdt (D.4)

where694

R = −uMx − vMy − ε (D.5)

and695

Gt +∇ · uhG = ∇h · (νh∇h
G

h
)− δ(x− xo, t− to) (D.6)

These are the equations used in the analysis of the MOM6 results.696

References697

References698

Aluie, H., Hecht, M., Vallis, G., 2018. Mapping the energy cascade in the North Atlantic699

Ocean: The coarse-graining approach. Journal of Physical Oceanography 48, 225–244.700

Arbic, B., Muller, M., Richman, J., Shriver, J., Morten, A., Scott, R., Serazin, G., Penduff,701

T., 2014. Geostrophic turbulence in the frequency-wavenumber domain: Eddy-driven low-702

frequency variability. Journal of Physical Oceanography 44, doi:10.1175/JPO–D–13–054.1.703

Arbic, B., Scott, R., Flierl, G., Morten, A., Richman, J., Shriver, J., 2012. Nonliear cascades704

of surface oceanoic geostrophic kinetic energy in the frequency domain. Journal of Physical705

Oceanography 42, 1577–1600.706

Berloff, P., McWilliams, J., 1999. Large-scale, low-frequency variability in wind-driven ocean707

gyres. Journal of Physical Oceanography 29, 1925–1949.708

25

©2020 American Geophysical Union. All rights reserved.



Charney, J., 1971. Geostrophic turbulence. Journal of Atmospheric Science 28, 1087–1095.709

Dijkstra, H., Molemaker, M., 1999. Imperfections of the North Atlantic wind-driven ocean710

circulation: Continental geometry and windstress shape. Journal of Marine Research 57,711

1–28.712

Ferrari, R., Wunsch, C., 2009. Ocean circulation kinetic energy - reservoirs, sources and713

sinks. Ann. Rev. Fluid Mech. 41, 253–282.714

Fjortoft, R., 1953. On the changes in the spectral distribution of kinetic energy for twodi-715

mension, nondivergent flow. Tellus 5, 225–230.716

Holland, W., 1978. The role of mesoscale eddies in the general circulation of the ocean -717

numerical experiments using a wind-driven quasi-geostrophic model. Journal of Physical718

Oceanography 8, 363–392.719

Kelley, D., Allshouse, M., Ouellette, N., 2013. Lagrangian coherent structures720

separate dynamically distinct regions in fluid flows. Physical Review E 88,721

doi:10.1103/PhysRevE.88.013017.722

Kraichnan, R., 1964. Decay of isotropic turbulence in the direct-interaction approximation.723

Physics of Fluids 7, doi:10.1063/1.1711319.724

Kraichnan, R., 1967. Interial ranges in two-dimensional turbulence. The Physics of Fluids725

10, doi:10.1063/1.1762301.726

Nagai, T., Tandon, A., Kunze, E., Mahadevan, A., 2015. Spontaneous generation of near-727

inertial waves by the Kuroshio Front. Journal of Physical Oceanography 45, 2381–2406.728

Scott, R., Arbic, B., 2007. Spectral energy fluxes in geostrophic turbulence: Implications for729

ocean energetics. Journal of Physical Oceanography 37, 673–688.730

Scott, R., Wang, F., 2005. Direct evidence of an oceanic inverse kinetic energy cascade from731

satellite altimetry. Journal of Physical Oceanography 35, 1650–1666.732

Shakespeare, C., Hogg, A., 2017. Spontaneous surface generation and interior amplification733

of internal waves in a regional-scale ocean model. Journal of Physical Oceanography ,734

doi:10.1175/JPO–D–16–0188.1.735

Wunsch, C., Ferrari, R., 2004. Vertical mixing, energy, and the general circulation of the736

oceans. Ann. Rev. Fluid Mech. 36, doi:10.1146/annurev.fluid.36.050802.122121.737

Young, W., 2010. Dynamic enthalpy, conservative temperature, and the seawater boussinesq738

approximation. Journal of Physical Oceanography 40, 394–400.739

References740

741

26

©2020 American Geophysical Union. All rights reserved.



2 1 4 8 11 141 4 8 11 141 4 8 11 14

0

2

4

6

8

K
 (

m
2
/s

2
)

10 -3 1536km - 1200km

8 1 4 8 11 141 4 8 11 141 4 8 11 14

-2

0

2

4

K
 (

m
2
/s

2
)

10 -5 500km - 450km

121 4 8 11 141 4 8 11 141 4 8 11 14

Band Number

-10

-5

0

5

K
 (

m
2
/s

2
)

10 -5 300km - 250km

0   150 300 450 600 750 900 1050 1200 1350 1500

Km

1 

5 

10

14

B
an

d

Figure 6: Three kinetic energy decompositions corresponding to bands 2 (upper), 8 (next upper) and 12
(next lower). Vertical black lines limit the final kinetic energy in the band, the contributions to that band
from the 14 bands of the initial kinetic energy, pressure work and dissipation, respectively. Horizontal black
lines denote values of the quantity and the red line is the cumulative sum, moving to the right, of the various
contributions. The abscissa denotes band number and the ordinate is energy in m2/s2. The bottom plot
connects the band number on the y-axis to the length scales within that band, appearing on the x-axis in
km.
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Figure 7: The kinetic energy distributions in layer 2 from our model run appear in the upper row (day 50
(left) and day 220 (right)). The kinetic energy transfer in band 2 from day 50 to day 220 appears in the
lower left, and the day 220 kinetic energy content in band 2 appears in the lower right.
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Figure 8: The distribution of dissipation at day 135 appears on the left. Note that it is concentrated into
small areas. Dissipation as it affects band 2 appears on the right. Although this is a large scale mode,
dissipation is still a major input to the kinetic energy development, as is seen in Fig. 6.
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net pressure work between these two cases are opposites, with the band 3 to band 2 case leveling off late in
the event, while the band 2 to band 2 case continues to drain kinetic energy.
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Figure 10: The anatomy of the pressure work occurring at day 200, relatively late in the merger event.
The pressure effect on band 2 of band 2 appears on the left and from band 3 to band 2 on the right.
The former case is dominated by negative values near regions of cyclones, and reflects the tendencies at
these largest scales for cyclones to merge. The distribution on the right hand side is much more evenly
distributed between positive and negative values, and indicates a weaker pressure work associated with a
more symmetrized, smaller scale structure.
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Figure A.11: An example of an irregular domain, consisting of a circular island inside a square domain. The
island, outlined in black, occupies about 10% of the area. Vanishing boundary conditions are put on the
island boundary and periodic conditions on the outer edge.
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Figure A.12: The first (left) and tenth (right) eigenmodes of the Helmholtz equation for the domain in Fig.
A.11. The island location appears in black. Clearly the gravest mode captures the broadest possible scales
of the domain and can be associated with the length scale L = 200m. The higher mode, however, while more
complex spatially, is also measuring comparable length scales of roughly 200m, in spite of being associated
with a much higher eigenvalue.
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Figure A.13: (top left) The reconstruction of a Dirac delta function inside the domain in Fig. A.11. The
island location appears in black (in all panels) and the delta function appears just to the south of mid island.
The γ100 sampling function (top right). Note that it does not penetrate the island, instead sampling only the
active fluid. The dashed black lines denote the locations of the transects appearing in the lower panels. The
north-south transect through γ100 appears on the lower left. The black lines denote the island location at
this longitude. The east-west transect through γ100 appears lower right. Note the qualitative resemblance of
the structure to a sinc function. The distance between neighboring high lobes is roughly 75m and consistent
with the rough length scale estimate of 90m associated with the eigenvalue.
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Figure 2.
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Figure 3.
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Figure 4.

©2020 American Geophysical Union. All rights reserved.



Day 220 Sample Domain

X (km)
0 500 1000 1500

0

500

1000

1500
Day 50 Sample Domain

X (km)
0 500 1000 1500

Y 
(k

m
)

0

500

1000

1500

©2020 American Geophysical Union. All rights reserved.



Figure 5.
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Figure 6.
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Figure 7.

©2020 American Geophysical Union. All rights reserved.



Day 50 KE

0 1000
0

500

1000

1500

Y
 (

km
)

0.01

0.02

0.03

0.04

Day 220 KE

0 1000
0

500

1000

1500

0.005

0.01

0.015

0.02

0.025

Day 50 B 2 to 2

0 1000

X (km)

0

500

1000

1500

Y
 (

km
)

-5

0

5

10

15

10 -8 Day 220 B 2

0 1000

X (km)

0

500

1000

1500

0

2

4

6

8

10
10 -7

©2020 American Geophysical Union. All rights reserved.



Figure 8.
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Figure 10.
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Figure A12.
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Figure A13.
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