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ABSTRACT 

Harrison, D.E. and Robinson, A.R., 1978. Energy analysis of open regions of turbulent 
flows -- mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. 
Oceans, 2 : 185--211. 

The concepts involved in the interpretation of energy budgets in subregions of a turbu- 
lent flow are examined in order to determine the processes responsible for the production, 
transport, and dissipation of energy throughout a dynamically inhomogeneous circulation. 
An interpretation of the effects of Reynolds stress--mean flow interaction work for open 
regions is presented in terms of the change in the total mean kinetic energy. In an arbitrary 
volume of fluid the changes in kinetic energy of the mean flow and the mean kinetic energy 
of the eddy flow are not generally equal and opposite, so this process is not generally 
responsible for a conversion of energy between the two forms. These ideas are then 
applied to a regional kinetic energy analysis of the mesoscale resolution general ocean 
circulation numerical experiment of Robinson et al. (1977). The spatial structure of the 
various terms in the equation for the mean eddy kinetic energy is examined. The issues 
involved in selection of a set of analysis regions are discussed and explored via examina- 
tion of budgets over different subregions of this flow. Thereby a relatively simple picture 
of the regional energetics emerges. Mean eddy kinetic energy is produced by conversion of 
kinetic energy of the mean flow in the net over the recirculation and near field of the 
northern boundary current system and roughly half of this energy is lost to each of 
mean eddy pressure work transport and diffusion work. Budgets over suhregions of this 
net source region are much more complex. The interior eddy field is driven by pressure 
work influx, while the southwestern region has eddy buoyancy work conversion of mean 
potential energy as its energy source. At every depth level the eddy field draws its 
kinetic energy from the mean flow, when averaged over the horizontal extent of the 
basin or over the recirculation and near field. 

1. INTRODUCTION 

Spatial inhomogeneity of  time mean statistical properties is characteristic 
of  many geophysical flows currently under scientific study. Mesoscale resolu- 
tion numerical general ocean circulation experiments (e.g., Holland and Lin, 
1975; Robinson et al., 1977;  Semtner and Mintz, 1977),  western North 
Atlantic ocean data (e.g., Brooks and Niiler, 1977; Dantzler, 1977; Luyten, 
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1977; Schmitz, 1977) and mid-latitude winter atmospheric data (e.g., 
Blackmon et al., 1977) have all been found to exhibit inhomogeneous first 
and second moments. It is necessary therefore to develop simple analysi~ 
methods that  will give insight into the dynamical effects of, and the processes 
responsible for, these flow statistics. 

Because of the complexity of the space and time variability of such geo- 
physical flows, useful analysis methods have often involved considerable aver- 
aging in time and/or space, e.g., seasonal and zonal averages for atmospheric 
data and long-time and full basin averages for numerical ocean experiments. 
Insight gained from the results of using these spatially averaged methods has 
contributed to the mechanistic understanding that exists of the atmospheric 
and model oceanic general circulations. However, such methods are always 
susceptible to the problem of producing spatially averaged budgets that may 
not be characteristic of the dynamical behavior of any actual subregion of the 
flow itself. Furthermore, they cannot yield information about the effects or 
causes of the spatially unaveraged structure. Particularly in the turbulent 
flow of numerical experiments, where every necessary variable is known, anal- 
ysis methods which enable these issues to be studied should be employed. 

The problem of understanding the effects of spatial inhomogeneity of a 
turbulent flow is here considered via examination of mean turbulent kinetic 
energy budgets over arbitrary open regions, i.e., with flow across the regional 
boundary. Interpretation of open regional energy budgets is complicated by 
the fact that the interaction of Reynolds stresses with the mean flow does not 
generally produce conversion of energy between the mean turbulent kinetic 
energy and the kinetic energy of the mean flow, as it does in a closed region. 
Indeed, this interaction is generally responsible for a net change in the sum of 
these two kinetic energies rather than simply a local transformation of energy 
from one type to the other. However, regional integrals of the terms in the 
mean turbulent kinetic energy budget evaluated over properly selected regions, 
combined with appropriate understanding of the processes represented by 
each term, can enable useful interpretation of the regional energy budget to 
be given. 

These ideas are applied to data from the highly time dependent flow of the 
mesoscale resolution numerical general ocean circulation experiment of 
Robinson, Harrison, Mintz and Semtner (1977) {henceforth RHMS) in order 
to investigate the mechanisms responsible for the production, redistribution 
and dissipation of the mean kinetic energy of its eddy field. Unsmoothed 
maps of the various energy terms are presented, appropriate analysis regions 
are discussed and defined and regional budgets are examined. The method is 
generalizable to many fluid systems and is equally applicable to the study of 
actual data as to model data. 

In Section 2 the analysis method and equations appropriate to RHMS are 
given. The spatial distribution of the model energy terms is qualitatively and 
quantitatively examined in Section 3. Energy budgets over various regions are 
described in Section 4. These results and some implications are discussed in 
Section 5. 
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2. OPEN REGIONAL ENERGY ANALYSIS 

The problem of open region energy analysis is discussed here in terms of the 
primitive equation fluid system used in the numerical experiment of  RHMS, 
although the basic ideas are more general. 

A. Energy equations for a turbulent primitive equation fluid 

We examine the mean energetic properties of our turbulent  fluid system by 
introducing an averaging operator, - ,  and decomposing each field into its aver- 
age {mean field) and a departure from this average {eddy field), @' = @ - - ¢ ,  in 
the classical Reynolds sense (e.g,, Monin and Yaglom, 1971). However, for 
the numerical analysis the overbar represents a time average over the duration 
of the data timeseries. 

The mean kinetic energy (MKE), ~(E 2 + ~2), is the sum of the kinetic energy 
of the mean flow (KEM), _~(~2 + F2), and of the mean kinetic energy of the 
eddy flow (MKEF), ~(~,2 + ~ 2). The needed energy equations for this study 
consist of those for the KEM, MKEF and mean total potential energy: 

a a a , , 
+ = 

a2~x a 2 ~ 
+ AMUk axaax------ ~ + K~x ~ + agWT (la)  

2 at (u'~u'~) + - -  [~uiu~,u x + + '~'1 + u'~u; - &~c j  ~uju~u~ ujP axj 

2 '  2 '  , ~ U x  
, a ux + K u x  +agw'T' ( lb) + A,~ux axa----~x--~6 

where Cartesian tensor notation with summation convention has been used, 
5, X = 1, 2; j = 1, 2, 3; a is from the model equat ion of state, 
P = P0 [ 1 -- a ( T -- T0) ] ; T is the effective temperature; p is a dynamic pres- 
sure in which the hydrostatic pressure field has been removed; ux are the 
conventional horizontal components  of the velocity vector u~; W(Ua) is the 
vertical velocity; z is the depth; g is the gravitational acceleration and K, AH, 
A..~ are constants. 

The KEM equation is formed by taking the scalar product of  the mean 
velocity with the vector mean momentum equation. The MKEF equation 
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follows by subtracting the KEM equation from that of the MKE (the mean 
of the scalar product  of  the velocity and vector momentum equation) and 
making use of the identity: 

8 . . . .  8u~+~- 8 ' ' (Id) 

to obtain the conventional form (Goldstein, 1965; Monin and Yaglom, 1971). 
The mean total potential energy equation is formed directly from the model 
heat equation by mult ipl icat ion by --agz. * 

It can be seen from eqs. 1 that the time change ** of  a particular energy 
results from three classes of processes, t ransport  {or flux) processes, diffusive 
processes and interaction processes. The divergence terms represent transport  
processes. The diffusive terms represent processes that  are not  explicitly 
resolved by the numerical calculation. They provide a dissipative mechanism 
and allow external stresses and heat fluxes to drive the system. The remaining 
terms we call interaction processes, since they involve a direct or indirect 
coupling of two different  types of energy as will be seen in the following sec- 
tion. 

B. Interaction processes and the concept o f  conversion 

Possible ambiguity associated with alternative forms of  the interaction 
terms in eqs. 1, (e.g., by use of eq. ld ,  Lettau, 1954) must be resolved by 
defining the specific physical processes responsible for the interactions 
(Lorenz, 1955). In the special case that an interaction process is represented 
by the same term with opposite sign in two energy equations, the interaction 
is regarded as a conversion between those two forms of  energy. The two inter- 
action processes of eqs. 1 are buoyancy work,  defined by the interaction of 
the total flow with the gravitational field and Reynolds stress--mean flow 
interaction work, defined by the interaction of  the mean flow with the 
Reynolds stress field. 

In these terms buoyancy work is a conversion process responsible for energy 
exchange between KEM and mean potential energy and between MKEF and 
potential energy because agwT and ~gw'T' appear with opposite signs in the 
pairs of eqs. la,  l c  and lb ,  lc ,  respectively. 

To discuss the Reynolds stress--mean flow interaction work (hereafter 
interaction work) process, we now consider the energy changes due to interac- 

* It can be shown that  this equa t ion  is the sum of  the potent ia l  and internal energy 
equat ions,  simplified by scale analysis (Harrison, 1977 ), thus it does describe the total  
potent ia l  energy. 
** It is convenient  to speak of  the change of  a regional energy value due to a particular pro- 
cess even though all energy integrals are t ime-invariant  by def in i t ion of  the averaging 
operator .  No confus ion  will result f rom this usage so long as it is under s tood  that  by the 
" increase  (decrease)"  due to a process we mean that  positive (negative) work is being done  
by the particular process  on the  volume of  fluid. The sum of  changes due to all possible 
processes will necessarily be zero for a f low in statistical equil ibrium. 
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t ion work. Over a volume of fluid the total  work done on that  volume of  
fluid is given by: 

t t - -  

Po f v  ~ (ujux Ux) dV 

and is responsible for, a change in the integrated total  mean energy (MKE). 
From eqs. la ,  b, d it is seen that  this MKE change is the sum of interaction 
work changes in KEM and MKEF described by: 

_ ~ , , aux 
ux ~ i uxui d V  and Po f u'xu}-~i dV  Po , . 2  

V 

respectively. For this reason we define: 

, , - -  -- a , , ~ux 
~x i uxuj ux , u~, -~i u~ul , and u'xuj. ~xj 

to be the MKE, KEM, and MKEF interaction work terms, respectively. These 
labels are suggested by an analogy between viscous and Reynolds stresses. 
When the viscous stress tensor interaction with a laminar flow is examined, a 
relationship formally analogous to ( ld )  exists with the replacement 

f 

uxu i ~ ou, KEM ~ kinetic energy, and MKEF ~- internal energy are made 
(Townsend, 1956, §2.7). It  must be emphasized that  this formal correspon- 
dence does not  imply a similar physical correspondence,  for  the properties of  
the viscous and Reynolds stress tensors can be quite different.  

If integrated over a mechanically closed volume of  fluid (e.g., no normal 
boundary  velocity) then ( ld )  shows that  the integrals of  the KEM and MKEF 
interaction terms are equal and opposite. Thus over such a region interaction 
work is a conversion process. Closed domain global energetic balances of 
course utilize this result. 

However, if integration over an arbitrary volume of  fluid is considered, ( ld )  

T A B L E  I 

Types  of  regions for  M K E F  regional  analysis  

Region  t ype  Proper t i e s  

1 I n t e r a c t i o n  work  acts  rough ly  like a regional  convers ion  process:  

('--r~, a~x Juxu j Dxj dV~- -- f u h  ~ u j u k  dV 
R R 
I n t e r a e t i o n  work  does  n o t  act  like a regional  eonvers ion  process ,  b u t  
can  be  neglec ted  c o m p a r e d  to  o t h e r  work  t e rms  

I n t e r a c t i o n  work  does  n o t  act  l ike a regional  convers ion  process ,  and  
c a n n o t  be  neglec ted  c o m p a r e d  to  o t h e r  work  t e r m s  
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illustrates that the KEM and MKEF interaction work terms will generally not  
be equal and opposite and so interaction work does not  generally act as a 
conversion process. 

To understand the regional effects of interaction work, it is convenient to 
distinguish between the three possible results shown in Table I when the inter- 
action terms are integrated over an open region. If the KEM and MKEF inter- 
action work are approximately equal and opposite in the net over the region, 
then the effect  of interaction work is to act as a regional conversion process 
and such a region will hereafter be classified Type 1. Should the regional inte- 
grals not  be roughly equal and opposite then the region is classified either 
Type 2, if interaction work is negligible in the regional budget compared to 
the other  transport,  conversion and diffusion terms or Type 3, if interaction 
work cannot  be neglected. The physical importance of these distinctions ap- 
pears when trying to define useful analysis regions. 

C. Terms for the turbulent kinetic energy balance 

To determine the means by which MKEF is produced, transported around 
within the basin and affected by diffusive processes, the terms in eqs. lb  and 
l d  and their volume integrals over various open regions, R, are examined and 
compared. The regionally integrated terms that  will be discussed and the 
name here adopted for the physical process associated with each are: 

0 .~ , )  

ujp i"  

, (} U ~  

AMUx ~x~x~  R 

02u'~ I 

ux uj ~xj ) R 

~ j j  UAUj R 

boundary transport  of MKEF due to mean flow 
advection of MKEF 

boundary transport  of MKEF due to mean eddy 
advection of eddy energy 

boundary transport  of MKEF due to boundary 
mean eddy pressure work 

mean eddy lateral diffusion work (dissipation and 
regional boundary stress work) 

mean eddy vertical diffusion work 

mean eddy buoyancy work conversion between 
MKEF and potential energy 

MKEF Reynolds stress--mean flow interaction work 

KEM Reynolds stress--mean flow interaction work 
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- , ,)} 
(u~ u~uj R 

t~UxUx) R 

where 

{¢}R -- p0 f ~d(Vol)n 
R 
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MKE Reynolds stress--mean flow interaction w o r k  

storage of  MKEF over the averaging interval (= 0 if 
statistics are stationary in t i m e )  

D. Selection o f  analysis regions 

In a spatially inhomogeneous flow many different factors can affect  the 
selection of appropriate analysis regions. It is physically desirable that  the anal- 
ysis region be a quasi-homogeneous part of  the flow in order to  avoid aver- 
aging over areas of  different behavior. However, the chosen type  o f  homoge- 
neity can be defined using the kinematical characteristics of  the flow, the 
dynamical balance of terms in the flow equations or the distribution of  t h e  
energetic processes themselves. Generally speaking each of  the three criteria 
will yield different analysis regions. 

The ideal set of  energy analysis regions would be one in which each region 
is kinematically and dynamically distinct, ye t  spatially homogeneous within 
the regional boundaries, and also of  Type 1 or Type 2 (Section 2.B). When 
kinematical or balance of  terms homogenei ty  leads to regions of  Type 3 
there will be limitations on the physical conclusions that can be drawn from 
such budgets because interaction work does no t  act as conversion process. 
Conversely budgets over regions of  Type  1 where the flow c a n n o t b e  regarded 
as kinematically or dynamically homogeneous may be difficult t o  interpret I 
physically. 

We have found it necessary to examine the unsmoothed spatial distribution 
of  energy terms, to compute  integrals of  these terms over small horizontal 
areas of  different vertical extent, and to combine these small regional integrals 
in various ways dictated by the above selection criteria in order to ult imately 
arrive at a satisfactory set of  analysis regions that  yield a relatively simple ener- 
getic description of  the flow. 

3. RHMS MKEF ENERGY TERMS 

Plots of  the energy terms of  ( lb ,d) ,  along with regional integrals over small 
volumes of  the basin, are displayed and/or described in thissection.  The small 
regional integrals serve the important  role of  reducing the large amount  of  
spatial information to a quanti ty that  can be easily assimilated. It  is conve- 
nient for descriptive purposes to introduce the regions of the flow of  RHMS 
that were found to be kinematically or dynamically distinct through analysis of  
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Fig. 1. The m e a n  t r a n s p o r t  s t r e a m f u n c t i o n  field of  R o b i n s o n  et  al. (1977 ) wi th  (a) kine- 
mat ica l ly  or dynamica l ly  d is t inc t  regions of  the  f low ou t l ined  and  labeled,  and  (b)  a l terna-  
tive k inemat ica l ly  d i s t inc t  b o u n d a r y  cu r r en t  regions. C o n t o u r  interval  is 60 • 106 m 3 s - 1  
relat ive to  the  b o u n d a r y .  

the flow characteristics and heat, momentum and vorticity balances. These 
regions are shown and labeled in Fig, la ,  superimposed upon the mean trans- 
port  s treamfunction,  and will be used in descriptions of  the geographical varia- 
tion of energy terms. Shown in Fig. l b  are alternate boundary current  regions 
that  will be useful in Section 4. 

The extent  to which the small scale features of some of the plots should be 
believed deserves comment .  Whenever convenient,  energy term variances have 
been computed in order to do simple tests of significance. Using the RHMS 
test of significance leads to the conclusion that  maximum amplitude point 
values are generally reliably different  from zero at the 99% level. The signifi- 
cance of  smaller values varies from energy term to term and can be marginal or 
even zero. A thorough description of significance for the warious terms is felt 
to be unnecessary for our qualitative purposes. In addition to questions of 
significance it is necessary in some regions to consider the numerical reliability 
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of the original data as suspect (see RHMS), and these areas will be pointed out  
as appropriate. Unless otherwise noted,  variation of  the energy terms on the 
scale of  the mean flow in intense current regions and the eddy scale elsewhere 
is felt to be plausible. It is not  known whether  the smaller scale features are 
indeed physically characteristic of  intense current regions or should be 
regarded as numerical artifacts. 

In order to insure proper representation of  the finite difference energetics 
of  model  subregions, the various terms in the above equations and their inte- 
grals have generally been evaluated in strict adherence to the numerical 
model finite difference energy equation expressions. Only in Section 3.C. 3 
was it so much more convenient  to abandon the proper finite difference form 
that another form was used and the limited consequences of  this modification 
are considered there. 

The use of the strict staggered grid finite difference energetics forms intro- 
duces one non-trivial constraint into this analysis because buoyancy  work and 
vertical integrals of  buoyancy  work are defined over different grids than are 
the other KEM and MKEF terms (Haney, 1971). Because of this, energy bud- 
gets are not  defined for individual grid boxes. Budgets can be rigorously 
defined only if the regions extend over the full depth of the basin. It would 
be necessary to introduce interpolations and approximations to the finite 
difference energetics in order to obtain balanced budgets over regions of  
limited vertical extent. 

A. Interaction work processes 

1. Reynolds stress--mean flow interaction work 
The KEM and MKEF Reynolds stress--mean flow interaction terms are 

hereafter defined with the following signs included: ~ a u~u~axj for KEM 
and --u'~uj a-uk/axj for MKEF. This sign convention is introduced so that posi- 
tive values of  the MKEF (KEM) interaction term indicate an increase 
(decrease) of  MKEF (KEM) due to interaction work processes. Thus, when- 
ever values are positive for both  fields, interaction work processes decrease 
KEM and at the same time increase MKEF over that  region of  fluid. When- 
ever values are of the same sign and magnitude, conversion (2.B) between 
KEM and MKEF is taking place. 

Consider briefly point  values of the MKEF term at different levels in the 
model grid. Fig. 2 shows plots of  --u~u~ auk/axj at upper thermocline (490 m) 
and deep water (2690 m) levels. Stippled regions indicate negative values and 
the first contour  line is drawn for magnitudes of  10 -5  erg g--1 s-1. Other lines 
correspond to factors of  ten increase in magnitude so that  the next  contour  
corresponds to 10 --4, etc. The upper  thermocline plot  is generally typical of  
the behavior of  th e upper  four  levels in the numerical model. 

The MKEF interaction term plots (Fig. 2) are spatially variable on the 
eddy scale away from intense currents and are variable on the boundary  
current scale in intense current regions. Within the NBC(W) and Near Field 
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~ o - -  ~ x  
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-u~u;, ~Ox JR-uxu'-- dV (x10 ~4) (2690m) I axj 

Fig. 2. MKEF Reynolds stress--mean flow interaction term in (a) the upper thermocline 
(490 m), and (b) the deep water (2690 m). Stippled regions indicate negative values and 
the first contour line corresponds to a magnitude of 10 -5  erg g--1 s--1, while each further 
contour line corresponds to an increase in magnitude of a factor of ten. Positive values indi- 
cate that MKEF is being increasecl by interaction processes. 

Fig. 3. MKEF Reynolds stress--mean flow interaction term. (a) Vertically integrated field. 
Plotting convention is as in Fig. 2 except the first contour line now corresponds to 10 -1 
erg cm g--1 s--1. (b) Subregional integrals. Units are 10 -14 erg s -1 . 

regions po in t  values are general ly of  the same sign t h r o u g h o u t  the water  
co lumn,  bu t  elsewhere there  is sign variat ion be tween  the two  depths.  The 
only  locat ion where large po in t  values (> 10 --4 erg g-1 s - l )  are found  system- 
atically over many  grid points  is in the shallower depths  of  an area overlapping 
the NBC(W) and Near Field regions, and the values are positive. There  is con- 
siderable large ampl i tude  and small space scale, O (50 km), var ia t ion in the 
nor the rn  par t  of  the WBC and along the nor the rn  wall in the  NBC(E).  This 
variation, as welt as the spatial s t ructure  described above, c a n n o t  be a t t r ibuted  
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to inadequacy of  the statistics, but  is either characteristic of  the physical 
model intense current regions or of  numerical model inadequacies within 
these regions. 

Vertical integration of the MKEF interaction term results in Fig. 3a, where 
the plotting conventions are the same as for Fig. 2 except  that  the f i r~  heavy 
line now corresponds to values of  10 -1 erg cm g-1 s-1. Except  in part of  the 
NBC(E) Fig. 3a resembles Fig. 2a, and the same area of  the NBC(W) and Near 
Field remains the only significant area of  large positive values. There are no 
regions of  similarly large negative values, where energy is lost from MKEF. 
Subregional volume integrals are shown in Fig. 3b and confirm the impressions 
given by Fig. 3a. The central and eastern subregions of  the NBC(W) and Near 
Field and the  eastern subregion of  the NBC(E) present the largest integral 
values, and indicate an increase in MKEF due to interaction work. 

Fig. 4 presents the KEM interaction term with the same conventions as Fig. 
3. Although not  shown, the four upper level KEM interaction term plots tend 
to resemble Fig. 4a, with the deep level plot similar in the NBC(W), but  gener- 
ally of opposite sign elsewhere. The dominant  feature of Fig. 4a, b is the rela- 
tively large area of  the NBC(W) where there is loss of  energy from KEM due 
to interaction work. Nowhere is there correspondingly great gain of  energy to 
KEM. From Fig. 4b, it is seen that  the combined energy loss in the eastern 
and central NBC(W) subregions is ten times greater than the gain or loss in 
any other subregion and typically thirty or more times greater than that in 
subregions away from the boundaries. 

In order to begin discussion of  the energy conversion properties of interac- 
tion work in this flow, consider Fig. 5. The plot  presented in Fig. 5a shows 
those areas of  the flow in which there is pointwise decrease of  KEM and 
increase of MKEF (case a), pointwise increase of  KEM and decrease of  
MKEF (case b) and simultaneous pointwise increase or decrease of KEM and 
MKEF {case c). There is relatively limited area of case a, somewhat  greater 
area (~ 20% of the basin) of  case b and so the dominant  behavior is of case c. 
Subregional integrals are presented in Fig. 5b, with a "  + " used to denote 
regions whose behavior is of  case a ,  " - -  " for regions of case b and regions of  
case c are left blank. Only in subregions marked " + " is it possible for there 
to be conversion of KEM into MKEF, bu t  examination of  the values of  the 
subregional integrals given in Figs. 3b and 4b reveals that  only the central 
NBC(W) subregion is of  Type  1 (see Section 2.B) and has significant magni-  
tude. The other  NBC(W) and Near Field subregions with large values do not  
show Type 1 behavior. 

In order to give the distribution of interaction work with depth over sub- 
regions with vertically integrated case a behavior, we present Table II. The 
first data column gives the MKEF/KEM integral over the horizontal extent  
of  the basin and the depth band indicated. The other  columns present inte- 
grals over the subregions labeled with letters in Figs. 3b and 4b and the vari- 
ous depth bands. Integrated over the basin it is seen that  each level consti- 
tutes a Type  1 region in which KEM is converted into MKEF. Within the 
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- + 
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+ + 

+ 

+ 

UX~x'~{u j u~) dV (xlO 14) + ~ increose ot MKEF, decreose of KEM 
- --~ decreose of MKEF, increose of KEM 

Fig. 4. KEM Reynolds  stress--mean f low interact ion term as in Fig. 3 except  that  positive 
values indicate that  KEM is being decreased by interact ion processes. Note  that  max imum 
positive values of  KEM and MKEF are found in different  areas (compare  with Fig. 3). 

Fig. 5. Comparison of  KEM and MKEF interact ion terms. (a) Comparison of  sign of  
vertically integrated terms. Heavy (light) stippling indicates a decrease of  KEM (MKEF) 
and an increase of  MKEF (KEM), while no stippling indicates a s imultaneous increase or 
decrease of  bo th  KEM and MKEF. (b) Subregional integral compar ison of  sign of  energy 
changes. 

NBC subregions there is relatively little variation with depth of the sign and 
magnitude of  each interaction work, while the WBC subregions are largest in 
the upper three depth bands. Except in NBC(W)2, there are few subregions 
of  Type 1. A maximum volume normalized value is about 10 --4 erg cm -3 s -1 
and a typical value is O (10 -5 ) at each depth. 

2. Eddy buoyancy work 
The mean eddy buoyancy work, ~gw'T', at 325 m is shown in Fig. 6a and 
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(o) 

( f _ ~  ~ k  ~x/ d V ) / ( [ ~ k  ~x/O u'ku ~ dV)(×1014 erg s--Z) 

Depths (m) Region 

Basin NBC(E) a NBC(W)I b NBC(W)2 c WBC d 

0--100 33/34 7/1 17/33 9/8 4/5 
100--325 49]49 8/5 25]45 14/10 6/7 
325--900 58/58 6/6 25/53 15/15 3/4 
900--2000 52/50 6/4 20/44 9/12 0/1 

2000--4000 71/66 3/5 24/51 10/11 --1/0 

TABLE II 

Regional interaction work integrals vs. depth (see text) 

c gw'T'  (325m) 

(b) 

-3  

- 2  

-3 

- 1  

0 

/~ 9w'T'dV (xlO 14) 

2 

- 2  

-1 

-1 

--1 

0 

Fig. 6. Mean eddy buoyancy work. (a) In the upper thermocline (325 m), as Fig. 2a. 
Positive value indicates conversion of mean potential energy into MKEF. (b) Subregional 
integrals as in Fig. 3b. 
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is generally representative of the other levels. Regions in which the eddy 
buoyancy work is negative, indicating conversion of MKEF into potential 
energy, are indicated by stippling. This is again a log-contour plot with the 
first contour line at 10 -5 erg g-1 s-l,  the next at 10 -4, etc. The largest values 
are found in the northwestern part of the WBC and along the boundary in the 
NBC(E), where point values can be 10 -3 erg g-1 s-l,  but there is considerable 
grid-scale variation. The largest area of large point values and a single sign is 
the SW, where maximum values are O (10-5). There are also relatively large 
regions of significant positive and negative values in the NBC(W) and Near 
Field, respectively. 

The subregional integrals {Fig. 6b) reveal 1;hat only in the SW, in the part 
of the NBC(W) where it is turning from southward flow to westward flow, in 
two small subregions of the WBC and in a narrow region in the northeast, is 
there positive net eddy buoyancy work. The areas of largest point values 
generally have integrated values smaller than those of the SW subregions. 

The vertical distribution of eddy buoyancy work has been examined in the 
labeled subregions of Fig. 6b, ~ la Table II. Because the values are not generally 
large enough to play a major role in most balances, only the qualitative behav- 
ior is described. The largest eddy buoyancy work integrals are generally found 
in the upper thermocline {160--490 m) or thermocline (490--1310 m) depth 
bands in the northern and western subregions~ In the southwestern subregions 
the deep (1310--2690 m) contribution is comparable to the thermocline and 
upper thermocline contributions. Examination of the volume normalized 
forms of these integrals reveals that  the largest value is generally in the upper 
thermocline band. There can be more than an order of magnitude decrease of 
normalized values within the water column in the northern and western sub- 
regions, and typical maximum values are O (10 -~) erg cm -3 s -1. 

3. Summary 

Interaction work terms are systematically large in some parts of the NBC- 
(W) and/or Near Field regions. The vertically integrated fields can conveniently 
be used in these regions because there is little or no sign variation with depth. 
There is loss of KEM in the eastern and central parts of the NBC(W) and gain 
of MKEF in the central and eastern parts of the NBC(W) and Near Field. 
Generally the subregions of the NBC(W) and Near Field are not of Type 1 and 
so it is inappropriate to identify any single subregion as a primary "seurce"  
region because interaction work does not generally act as a conversion process 
locally within these regions (see Section 5). However, integrated over the 
horizontal extent of the basin within individual depth bands, interaction work 
does act as a conversion process, and converts KEM to MKEF over each depth 
interval. 

There is considerable spatial structure in the eddy buoyancy work term, 
but subregional integration generally leads, even in areas of maximum point 
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values, to integrated values which are smaller than the corresponding regional 
MKEF interaction work values. Only in the SW subregions is buoyancy  work 
consistently larger than MKEF interaction work. 

B. Horizontal and vertical diffusion work 

The only significant dissipation or diffusion of  MKEF due to vertical diffu- 
sive processes occurs through bo t tom stress work in the deep water.  The 
largest subregional vertical diffusion work in the upper  four levels is less than 
1018 erg s -z  and would be entered as zero on the scale of  the previous figures. 
The distribution of bo t tom stress dissipation is as one would expect  -- 
greatest in the NBC(W) and Near Field regions, where the eddy signal is 
strongest, and reasonably uniform with reduced magnitude elsewhere. Fig. 7a 
presents the subregional integrals of  eddy vertical diffusion work. 

Given the highly barotropic character of  the Interior eddy field of  (RHMS), 
the pointwise distribution of  horizontal diffusion work is predictably uniform 
with depth. Even in the intense current regions it varies at maximum by a fac- 
tor of  five from the surface level to the deepest level. Fig. 7b presents the sub- 
regional integrals of  eddy horizontal diffusion work and reveals that  near the 
boundaries, integrated horizontal diffusion work tends to be larger than verti- 
cal diffusion work, but  elsewhere they are comparable in magnitude. 

C. Boundary transport processes 

1. Mean flow transport 
The term that describes the divergence of  the mean flow MKEF flux vector, 

- -  ] .  ~ t [u~(~ukux)]/~xj is shown, vertically integrated, in Fig. 8a. The largest point  
values are found along the northern boundary in the separation region, in the 
NBC(W) at the longitude of  boundary current separation, and in the middle 
of  the NBC(W)/Near Field region west of  the separation longitude. There is 
mean flow scale variation in the NBC(W)/Near Field where the divergence is 
systematically positive in the eastern part of  the NBC(W) and generally nega- 
tive elsewhere. 

Subregional integrals are shown in Fig. 8b, and confirm the above. Recall 
that: 

dV= f 
R SR 

where ~i is a vector, Sn is the surface bounding the region R and nj is the unit  
outward normal vector to the element of  surface dS. Thus these integrals give 
the rate at which MKEF is leaving the region due to mean transport. A posi- 
tive value implies that  MKEF is leaving the subregion. There is strong export  
of MKEF from the eastern subregion of  the NBC(W) and comparably strong 
import  in the subregions west and south of  it. Nowhere else in the basin is 
there strong net import  or export  of  MKEF by  the mean flow. 
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Fig. 7. Mean eddy  d i f fu s ion  w o r k  sub reg iona l  integrals.  (a) Vert ical  d i f f u s i o n  w o r k .  (b)  
Hor i zon t a l  d i f fu s ion  work .  Negative values  indica te  decrease  in subreg iona l  M K E F .  Uni t s  
are 1014 erg s - 1 .  

Fig. 8. Mean f low t r a n s p o r t  o f  M K E F .  (a) Ver t ica l ly  in teg ra ted  t e rm,  (b)  Subreg iona l  inte- 
grals, c o n v e n t i o n s  as in Fig. 3. F o r  this,  and all o t h e r  t r a n s p o r t  p rocesses ,  negat ive values  
indicate  an inf lux  o f  M K E F .  

2. Mean eddy flow transport 
Consider the divergenceof the mean eddy advection of eddy energy 

I f r r transport vector, a(~uju~,u~)/ax i. The statistical reliability of the point values 
of this term is the poorest of the terms considered. The field is not statistically 
significantly different from zero at the 95% level except in the NBC(W) and 
Near Field regions, where the largest point values have error bars equal to 
about half their value. To establish significance in the Interior values would 
require a time series at least ten times longer than the analysis record used in 
( R H M S ) .  
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Fig. 9 shows a plot of  the vertically integrated point  values and the sub- 
regional integrals of  this field. Only in the NBC(W) and Near Field do the sub- 
regional integrals attain any non-trivial magnitude. Furthermore,  the net trans- 
fer of MKEF out  of  the combined NBC(W)/Near Field region is negligible. 
Within the NBC(W)/Near Field this flux is comparable to or smaller than 
mean flow flux. 

3. Mean eddy pressure work transport 
p ~ r  

Now consider the divergence of  the eddy pressure work, a ujp/axj. This 
term has been evaluated as a residual from all of  the other  terms in the MKEF 
equation, because it does not  appear naturally in the energy equation in a 
form that can be computed  easily from the momentum equation finite 
difference expressions. In order to verify the magnitudes and distribution of  
the divergence of the eddy pressure work, a standard second order centered 
difference approximation to ~ u~'/axj was computed  and integrals of  this 
compared with those of  the residual term. They compare satisfactorily in 
sign and magnitude, and so no significant error should be introduced by use 
of  the residual term. 

Fig. 10a shows a plot of the vertically integrated point  values. As before, 
there is some very small scale spatial structure in the northwestern part of  the 
basin and on the northern boundary where the NBC(E) separates from the 
wall, but  elsewhere the term is generally smoothly distributed. Throughout  
the Interior the horizontal divergence is negative, indicating import  of  
MKEF by eddy pressure work. There are areas of  significant positive and nega- 
tive values in the NBC(W) and Near Field regions. 

4. Summary 
Figs. 8b, 9b and 10b should be compared in order to determine the relative 

importance of the different transport  processes. The Interior subregions show 
eddy pressure work influx at typically 5 to 10 times the rate of  mean flow 
influx and mean eddy flow transport  is negligible. There is no systematic 
behavior in other regions, particularly in the NBC(W) and Near Field where 
each transport  term can be important  and adjacent subregions can have oppo- 
site signs for a particular process. 

A convenient way to illustrate the relative importance of  these transport  
terms is to examine the net southward transport  of  MKEF due to each pro- 
cess as a function of  latitude. Since there can be no transport through the 
boundaries of the domain, it is possible to do this calculation by appropriately 
summing the subregional integrals starting at, say, the southern boundary  and 
working northward in latitude bands. By this summation process it is easy to 
evaluate: 

0 2 2 ° W  9 ° N  0 2 2 ° W  

f N (ej) dV = f (¢,[OON) dV 
- - H  W o N - - H  W 
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Fig. 9. Mean eddy flow transport of  eddy kinetic energy. As in Fig. 8. 

Fig. 10. Mean eddy pressure work transport of  MKEF. AS in Fig. 8. 

where Cj is one of the transport process vectors, ¢~. is its meridional compo- 
nent, and the model boundary conditions,  together with the divergence 
theorem, are used to obtain the right hand integral. 

The results of this calculation are shown in Fig. 11. Within the NBC(W) 
and Near Field the three transport terms all contribute at O( 1 ) to the meri- 
dional transport of  MKEF. However, only the pressure work term is respon- 
sible for any substantial southward transport of MKEF south of the Near 
Field southern boundary latitude. It should be recalled that each of the trans- 
port terms can be O (1) locally within the NBC(W) and Near Field as well as 
in the net. There is important redistribution of  MKEF by boundary transports 
within these regions. 

A similar calculation to obtain the net eastward transport of MKEF reveals 
that the pressure work term accounts for 8'0% of the net eastward transport of 
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Fig. 11. Net  s o u t h w a r d  f lux of  MKEF,  as a f u n c t i o n  of  l a t i tude ,  for  each of  t he  b o u n d a r y  
t r a n s p o r t  processes.  No te  t h a t  w i th in  the  NBC(W) and  Near Field region l a t i tudes  all t rans-  
po r t  processes  are of  the  same order  of  m a g n i t u d e ,  b u t  t h a t  f u r t h e r  s o u t h  pressure  work  
b e c o m e s  t he  d o m i n a n t  t r a n s p o r t  process.  Uni t s  are 1014 erg s - 1  . (See t ex t . )  

the energy into the part of the basin east of  the eastern boundary of  the NBC 
regions. 

4. R E G I O N A L  M K E F  B U D G E T S  

From the preceding section it is clear that  the spatial characteristics and 
relative magnitude of different energetic processes can be complex. Further- 
more, in the NBC(W) and Near Field areas of  the domain it is possible to find 
subregions over which each of  the terms of  Section 2. C is O (1) compared to 
the largest term, yet  the change due to a particular process can change sign 
between adjacent subregions. Examined on the scale of  Section 3, the local 
MKEF energetics do not  provide a satisfactory overall description of  the ener- 
getic processes responsible for the features of  this flow. In this section energy 
budgets over larger regions are examined in the spirit of  Section 2. D. Budgets 
over the dynamically distinct regions of  RHMS are first described and then 
followed by budgets over some useful alternative regions. 

The terms of Section 2. C are presented in the schematic form of Fig. 12a. 
The MKEF Reynolds stress--mean flow interaction work term is at the top of  
the box; mean eddy horizontal and vertical diffusion work are on the right 
side; mean eddy buoyancy  work is at the bot tom;  mean flow boundary  
MKEF transport,  mean eddy flow boundary transport,  and mean eddy pressure 
work boundary  transport  are on the left. The sign of  the energy change in the 
region due to a particular process is indicated by the direction of  the arrow,and 
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sign of the value, with an arrow pointing out  of  the box corresponding to a 
decrease in regional MKEF and a negative value. 

The term at the top of the box in the dashed region is the KEM Reynolds  
stress--mean flow interaction work term. The sign convention adopted for 
display of  the KEM interaction work term is that an arrow into the box (posi- 
tive value) corresponds to a decrease of regional KEM due to interaction work. 
Thus a Type 1 region is identified by having the magnitude and direction of 
both interaction work arrows the same. 

A. RHMS regional budgets 

The RHMS regional budgets are presented in Fig. 12b--g and the dominant  
balance region-by-region is: 

1. Southwest  (Fig. 14b): Eddy buoyancy  work conversion of  potential  
energy is balanced by horizontal and vertical diffusion work losses. Region is 
of Type 1. 

2. Interior (Fig. 14c): Eddy pressure work influx is roughly balanced by 
horizontal and vertical diffusion work losses. Region is of  Type 2. 

3. Near Field (Fig. 14d): All processes enter the lowest  balance. MKEF 
interaction work and mean flow transport increase MKEF while other  pro- 
cesses provide balancing losses. KEM and MKEF are both increased by  inter- 
action work. Region is of  Type 3. 

4. NBC(W) (Fig. 14e): All processes save buoyancy work enter the lowest  
order balance. MKEF interaction work and mean eddy transport  increase 
MKEF while the other processes decrease it. MKEF interaction work and 
eddy pressure work transport  are the largest terms. KEM is decreased at twice 
the rate that  MKEF is increased by interaction work. Region is of Type 3. 

5. NBC(E) (Fig. 14f): MKEF interaction work increases MKEF and is 
balanced by eddy pressure work transport,  eddy buoyancy  work, horizontal 
diffusion work and mean flow transport  losses. Region is roughly of  Type 1. 

6. WBC {Fig. 14g): Eddy pressure work transport  and MKEF interaction 
work increase MKEF while horizontal diffusion work, eddy buoyancy  work 
and mean flow transport  provide the balance. KEM is decreased at three 
times the rate that MKEF is increased. Region is of  Type 3. 

In none of  these regions is the basin integrated MKEF balance -- Reynolds 
stress--mean flow interaction work conversion of KEM into MKEF balanced 
by horizontal and vertical diffusion work losses -- found to exist. A typical 
time for the replacement of  the MKEF in a region due to the sum of  all pro- 
cesses which increase MKEF is ~ 20 days in intense current regions and 50-- 
150 days elsewhere. The time for diffusion work to remove the regional 
MKEF assuming diffusion work continues at the given level is ~ 50 days in 
intense current  regions and 1 0 0 - 1 5 0  days elsewhere. 

The Interior and SW regional budgets are easily interpreted, because these 
regions are of  Type 2 and Type  1, respectively and are simple, involving a 
limited number  of  processes. The other  regional budgets involve considerably 
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more processes and the regions are generally not of Type 1 or 2. Especially in 
the NBC(W) and Near Field the number of processes in the dominant  balance, 
the Type 3 character of the region and the fact that MKEF interaction work 
is the largest term combine to limit the possibility of simple physical interpre- 
tation of these energetically important regions. 

B. Budgets over alternative regions 

Here MKEF budgets over alternative regions are examined to try to increase 
understanding of the energetic processes in the areas of the basin where the 
budgets of Section 4. A are not wholly satisfactory. First the effects of com- 
bining together the NBC(W) and Near Field as well as the NBC(E) and WBC 
are described and then the WBC, NBC(E) and NBC(W) are slightly redefined 
and new budgets presented. 

Fig. 13 presents MKEF budgets for the combined NBC(W)/Near Field and 
WBC/NBC(E) regions. The combined NBC(W)/Near Field/MKEF balance is 
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Fig. 13. M K E F  budge t  for the  c o m b i n e d  NBC(W)/Near  Field and  NBC(E)/WBC regions. 
See t ex t  for descr ip t ion.  Uni ts  as in Fig. 12. 
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quite simple (Fig. 13a) because the combined region is of Type  1 and important  
transport effects are fewer. There is large input of MKEF due to Reynolds 
stress--mean flow interaction work conversion of KEM into MKEF which is 
roughly balanced by  pressure work transport  and diffusion work losses. The 
combined WBC/NBC(E) regions are almost a Type 1 region and show a budget  
in which there is little net  transport.  Input  of  MKEF due to interaction work 
is nearly balanced by losses due to horizontal diffusion work and eddy 
buoyancy  work. 

Although there would seem to be a compelling mean flow kinematical argu- 
ment  for separating the NBC(W) and Near Field regions when the mean flow 
is examined (Fig. 1), consideratibn of  maps of  MKEF and of  the mean and 
instantaneous flow balance of terms (RHMS Sections 3. D.2 and 4) reveals 
that their combinat ion can be defended on eddy flow kinematical and dynam- 
ical grounds. In addition, since interaction work represents the dominant  ener- 
getic process in each of the regions, the increased ease of  interpretation accord- 
ed by the fact that  the combined region is Type 1 further supports their com- 
bination. 
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Fig. 14. Alternate kinematical regional MKEF budgets (Fig. lb) ,  as in Fig. 12. 
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The best choice of regions for the western and northern boundary currents 
is less clear. A kinematically defensible alternative to the NBC(E) and WBC 
involves the redefinition shown in Fig. lb.  This selection of regions empha- 
sizes the recirculation aspect of the northern current system, in which over 
two thirds of the mass transport never leaves the NBC(E) * and NBC(W) * 
regions, and in which the WBC * region simply includes the net northward 
transport required to balance the Interior and SW transports. The energetics 
of these regions and of the combined NBC(W) */Near Field region are shown 
in Fig. 14. 

Using these new regions the NBC(W) * and NBC(W) */Near Field regional 
budgets are not modified in any significant way from their counterparts but 
the WBC * and NBC(E) * budgets are importantly different from those of 
the WBC and NBC(E). Within the WBC * input of energy due to MKEF inter- 
action work is roughly balanced by diffusion work while within the NBC(E) * 
the MKEF interaction work input is roughly balanced by losses to eddy 
buoyancy work and horizontal diffusion work. There is little net export or 
import of MKEF in either Type 3 region. 

5. DISCUSSION 

A. Summary o f  RHMS energetics 

The set of regions consisting of the NBC(W)/Near Field (or NBC(W) */ 
Near Field), Interior and SW account for 95% of the basin MKEF and suffice 
to permit a physically satisfactory and simple description of the MKEF ener- 
getics over 90% of the basin volume. Within the NBC(W)/Near Field KEM is 
converted to MKEF via Reynolds stress--mean flow interaction work, about 
half is lost to diffusive processes and most of the rest is exported bia eddy 
pressure work. The eddy field in the Interior is maintained against dissipation 
predominantly by the influx of energy from eddy pressure work; direct con- 
version from other forms of  energy and influx by other boundary transports 
are small. The eddy field in the SW is maintained predominantly by eddy 
buoyancy work conversion of  potential energy into MKEF; other inputs are 
negligible. 

Within the narrow boundary current regions of the WBC and NBC(E) the 
MKEF balances are more complicated. These were seen in (RHMS) to be the 
most dynamically complex regions of the mean flow, with one grid interval 
wall boundary layers, considerable variation in dynamical balances within 
each region and some suggestion of erratic numerical behavior in the extreme 
northwest corner and in the separation region of the NBC(E). It is not  surpris- 
ing, therefore, that  the local energetic properties of these regions seem to be 
less than simple. However, the results of Section 4. B illustrate that re-defini- 
tion of the analysis regions leads to the conclusion that  the regions are ener- 
getically passive insofar as serving as source regions or as sink regions of MKEF 
produced elsewhere. 

The spatial inhomogeneity of the model flow kinematics and dynamics has 
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been seen to have a counterpart  in similarly inhomogeneous regional MKEF 
balances. The regions identified in RHMS through kinematical and balance of  
terms analysis can be used to usefully describe the most  important  features of  
the MKEF energetics over most  of  the basin, so long as the NBC(W) and Near 
Field are treated as a single region. The energetics of  the principal source 
region are simple only when the whole region is considered as a unit. At tempts  
to form useful budgets over subregions of  the larger region have proven fruitless 
due to the large number  of  processes at work and to interaction work interpre- 
tation difficulties. 

B. Interaction work interpretation and conversion 

Determination of  the NBC(W)/Near Field as the primary source region of  
MKEF for the basin resulted from examination of both the KEM and MKEF 
interaction terms and their subregional integrals. It is not  possible to  define 
any smaller region as a primary conversion region. 

The energetic interpretation of  this source region would be significantly 
altered if the interaction work interpretations used by Holland and Lin (1975) 
or by Semtner and Mintz (1977} were employed.  Semtner and Mintz inter- 
pret the KEM interaction term as a conversion term between KEM and 
MKEF ("the barotropic generation term",  pp. 226--227 and fig. 19) while 
Holland and Lin similarly interpret a two-layer analog of  the MKEF interac- 
tion term ("the conversion of mean kinetic to eddy kinetic energy by  the 
Reynolds stresses," p. 649 and fig. 10). Using the Semtner and Mintz interpre- 
tation we would conclude from Fig. 4 that MKEF results almost entirely 
from conversion of  KEM in the eastern part of  the NBC(W) region. The im- 
portance of  the Near Field region would be overlooked. The Holland and Lin 
interpretation properly describes where MKEF is being increased by  interac- 
tion processes, but  leads one to conclude from Fig. 3 that  the mean flow is 
losing energy to the eddies throughout  the NBC(W)/Near Field. 

The KEM interaction term describes only the changes in KEM, just  as the 
MKEF interaction term describes only changes in MKEF. Knowledge of  one 
term generally does not  give any information about  the other, because of  the 
lack of  a pointwise conversion property for interaction work (Section 2. B). 
This same property means that  ideas of  "positive or negative eddy viscosity" 
as used by Semtner and Mintz (p. 227) and Holland and Lin (pp. 649, 654), 
by which is unders tood conversion of  KEM to MKEF or vice versa, are point- 
wise inappropriate in general. Only when the physical significance of  the KEM 
and MKEF interaction terms is properly unders tood is the complexi ty  of  the 
interaction process correctly described. 

C. Remarks 

Vertically integrated regional energy balances do no t  generally tell the entire 
local energetics story for a flow, but  in this experiment it has been shown by 



210 

the results of Section 3 that  vertical integration involves no essential loss of 
information, especially in the primary source region. In particular integration 
of the interaction work terms over the NBC(W)/Near Field and the horizontal 
area of the basin, and for each depth band reveals that interaction works acts 
to convert KEM to MKEF over every one of these regions. Thus the eddies do 
not directly drive a mean flow in the large or in the source region at any depth, 
but draw upon the mean flow for their energy. Although the result is far from 
definitive at this time, Schmitz {1977} has evidence to suggest that  the deep 
oceanic Gulf Stream near field may have the opposite direction of energy flow. 

The source of vertical transfer of KEM beneath the wind-driven surface 
level, which is necessary if the flow is to be in equilibrium and also provide 
energy for the eddy field at each level, appears to be mean vertical pressure 
work transport from the wind-driven upper level to the deeper levels. 

This type of regional energy analysis is a useful tool for dynamical investiga- 
tion of numerical model flows and, in principle, of oceanic flows. Its utility is 
constrained only by the need for the many different energy terms. For numer- 
ical model analysis less effort  is required to evaluate these terms than might 
be expected; this analysis and that  described in RHMS required less than 1% 
of the computer time required to do the integration of the basic experiment 
of (RHMS}. Regional energy analysis makes possible, with relatively little 
effort, physically meaningful differentiation between different model flows 
and provides useful information about the physical processes responsible for 
the flow in its distinct regions. 

In addition to  being a useful tool for the study of numerical ocean experi- 
ments, the analysis ideas used here are directly applicable to interpretation 
of the increasing amounts of time averaged current meter data being obtained 
through various oceanographic field programs (e.g., MODE, POLYMODE) or 
of Reynolds averaged atmospheric data. The problems of inferring dynamics 
from data apply equally well to laboratory, numerical model and oceanograph- 
ic field data sets. An understanding of the interpretation limits inherent in a 
given data set is important  for proper experimental design of oceanographic 
programs. 
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