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ABSTRACT: The nonlocality of eddy–mean flow interactions, which appears explicitly in the modified Lorentz diagram

as a form of the interaction energy, and its link to other estimation methods are revisited, and a new formulation for the

potential enstrophy is proposed. The application of these methods to the Kuroshio Extension region suggests that the

combined use of energy analysis with other methods, including the potential enstrophy diagram, provides more compre-

hensive understandings for the eddy–mean flow interactions in the limited region. It is shown that the interaction energy is

transported from the nearshore and upstream regions to the downstream region in the form of the interaction energy flux,

causing acceleration of the Kuroshio Extension jet in the downstream region. The potential enstrophy diagram indicates

that the eddy field decelerates (accelerates) the jet in the nearshore (downstream) region, which is a consistent result with

the energy analysis. It turns out that the interaction potential enstrophy flux is radiated from a region of the eddy kinetic

energy maximum toward the upstream region, which is the opposite direction from the interaction energy flux. The in-

teraction potential enstrophy flux that originated from this eddy kinetic energy maximum region also convergences near

the center of the northern recirculation gyre of the Kuroshio Extension region and tends to stabilize the structures of the

recirculation gyre. Together with the energy analysis that indicates the eddy field accelerates the northeastern part of

the recirculation gyre through the local interactions, the present analyses support the arguments on the eddy-driven

northern recirculation gyre.
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1. Introduction

Interaction between mean flow and eddy perturbations is

one of the key issues in physical oceanography, particularly in

and around the western boundary currents (WBC) such as the

Kuroshio and theGulf Stream, where strong currents and large

eddy activities are often observed (e.g., Chelton et al. 2011).

While eddy perturbations are usually considered as a source of

dissipation of the mean flow, they sometimes function instead

as a driving force for the mean flow. There have been many

attempts to investigate the dynamics of strong jets associated

with theWBCand their relations to eddy kinetic energy (EKE)

and eddy structures (e.g., Qiu et al. 2008; Waterman and Jayne

2011). These studies show, for example, that a recirculation

gyre of the WBC is induced through divergence of the

Reynolds stress due to eddy perturbations near strong WBC

jets and that eddy vorticity forcing changes mean potential

vorticity (PV) fields and generates recirculation gyres to the

north and south of the WBC jets. Also, quasi-stationary mean-

ders of theWBC jets are considered to be related to eddy–mean

flow interactions (e.g., Qiu and Chen 2010).

The Lorentz diagram (Lorentz 1955) is a powerful diag-

nostic tool for studying such eddy–mean flow interactions and

has been widely utilized to show energy budgets in the ocean in

previous studies (e.g., Ogata and Masumoto 2011; Magalhães
et al. 2017; Wang et al. 2017). The diagram focuses on energy

conversion rates among mean kinetic energy, mean available

potential energy, EKE, and eddy available potential energy,

with quantitative assessment of barotropic and baroclinic in-

stabilities. A remarkable advantage of this diagram and the

associated energy estimate formulae is their simplicity,

yielding straightforward implementation of the formulae

for an analysis of outputs from ocean general circulation

models (OGCMs).

The Lorentz diagram, however, is originally intended to be

used for global mean condition. An application of this method

to a regional analysis and/or discussions on spatial distribution

of the energy conversion rates may create misunderstandings

regarding the energy flow (Plumb 1983). One example is that

the barotropic energy conversion rates in the Lorentz diagram

could indicate a large value even without any local instability

processes due to energy fluxes from other areas. Therefore, the

energy conversion rates in the Lorentz diagram are inadequate

in some cases for estimation of eddy–mean flow interactions

in a limited region.

Alternative methods based on the wave activity or the

pseudo-momentum have been proposed to overcome the

above issue in the atmospheric literature (e.g., Andrews

1983; Plumb 1985a,b, 1986; Takaya and Nakamura 2001).

However, the assumptions adopted to develop the alterna-

tive methods are inapplicable in many cases to a region near

the oceanic WBC jets, in which background potential vorticity

changes their magnitude abruptly along their stream lines (e.g.,

Waterman and Jayne 2011). Furthermore, estimation of the

wave activity requires rather complicated calculations when
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using outputs fromOGCMs or atmospheric general circulation

models in some cases. For these reasons, the Lorentz diagram

is widely used in the analysis of oceanic energetics.

Another approach proposed by Murakami (2011) and Chen

et al. (2014, 2016) is to modify the energy conversion rates in

the Lorentz diagram for a local estimation. This approach al-

lows us to estimate locally induced energy transfer between

mean flow and eddy perturbations explicitly, as well as the

effects of ‘‘nonlocal’’ energy fluxes (Chen et al. 2014, 2016).

Murakami (2011) further examines the relationship between

these modified energy transfers and wave activity and indicates

that the modified Lorentz diagram can capture eddy–mean

flow interactions in a way that is consistent with other related

methods. However, since physical interpretations of the non-

local energy fluxes are not given explicitly and horizontal dis-

tributions of the nonlocal energy fluxes and their link to mean

structures of flow fields in an oceanographic context have not

been analyzed yet in detail, our understanding of energetics

in a regional area is still limited, and further investigation is

required.

There are several possible ways as described above to ex-

amine the transfer of energy between mean flow and eddy

perturbations. In the present study, we first review energy

conversion rates and related terms in the modified Lorentz

diagram. We extend our arguments to potential enstrophy,

which is another conservative quantity for a water parcel, to

obtain a complementary view to the energy diagram. The

Lorentz-type diagram in terms of the potential enstrophy and

its relation to the nonlocality of eddy–mean flow interac-

tions are documented for the first time in this study. Then,

we apply the modified Lorentz diagram to a region in the

Kuroshio Extension (KE) region. Our particular focus here

is to discuss physical interpretations of the interaction en-

ergy flux and equivalent fluxes in related expressions and to

show their distributions in the KE region. As an example of

the advantage of combining several viewpoints of the energy

diagram, we will briefly discuss the dynamics of the KE

recirculation gyres.

In general, both the baroclinic and barotropic processes are

important in the WBC jet regions. However, to highlight the

above points in a clear and concise way, we only focus on

barotropic processes in the energy analysis in the present study.

More complete descriptions of a total view of energetics in the

KE region is beyond the scope of this paper. Note that baro-

clinic processes can be treated in the same manner as that for

barotropic processes demonstrated in this article, and baro-

clinic effects are also included in the case of potential ens-

trophy conversion rates.

This paper is organized as follows. Brief descriptions for

each method are shown with their physical interpretations in

section 2. Section 3 compares energy conversion rates between

the classical Lorentz diagram and the modified diagram in the

KE region as a key example. Also, the potential enstrophy

conversion rates are discussed. Section 4 shows the analysis of

energy and potential enstrophy for the KE northern re-

circulation gyre and demonstrates the nonlocality of the eddy–

mean flow interactions. Finally, section 5 provides a summary

of this paper.

2. Lorentz diagram and the modified energy and
potential enstrophy transfer diagram

a. Modified energy conversion rates

We consider a variable x that can be described by its time-

mean value x, and eddy perturbations x0 as a deviation from

the mean, i.e.,

x0 5 x2 x . (1)

With this separation between the mean field and eddy per-

turbations, the barotropic energy conversion rate (BTR) in the

classical Lorentz diagram is given as follows (Lorentz 1955):

BTR52r
0
(u0u0 � =u1 y0u0 � =y) , (2)

where r0 is the constant reference density; u is the velocity,

with u and y as the zonal and meridional components; and =

is the three-dimensional gradient operator. This BTR is the

product of the gradient of the mean flow and eddy Reynolds

stresses, and a positive BTR value denotes energy gain in EKE

through eddy–mean flow interactions. The BTR is considered

to be the energy released from the mean kinetic energy in the

classical Lorentz diagram.

On the other hand, the modified energy transfer terms for

the barotropic processes proposed by Murakami (2011) and

Chen et al. (2014, 2016) have two expressions. According to

Chen et al. (2014), kinetic energy equations can be expressed as

follows:

›

›t
K

M
1= � (u �K

M
)1= � (u p)52grw2M

KM
1X

KM
, (3)

›

›t
K

E
1= �

"
u
1

2
r
0
(u02 1 y02)

#
1= � (u0p0)52gr0w0

1M
KE

1X
KE

, (4)

where KM 5 (1/2)r0(u
2 1 y2) is the kinetic energy of the mean

flow;KE is the EKE; andXKM
(XKE

) is the rate of change ofKM

(KE) due to friction, wind stress, and bottom drag. Here, MKM

denotes the rate of change of the mean kinetic energy due to

eddy momentum flux, while MKE
is the rate of change of the

eddy kinetic energy due to eddy momentum flux, which is the

same as the BTR. These terms can be written as

M
KM

5 r
0
(u=u0u0 1 y=y0u0)’ r

0
(u=

h
u0u0

h 1 y=
h
y0u0

h) , (5)

M
KE

5BTR52r
0
(u0u0 � =u1 y0u0 � =y)

’2r
0
(u0u0

h � =h
u1 y0u0

h � =h
y) , (6)

where uh is the horizontal velocity and =h is the horizontal

gradient operator. Since the vertical terms in the energy con-

version rates, such as 2u0w0(›/›z)u, are small compared to the

other horizontal terms, we neglect them in the following

analyses.

The difference between the two terms, MKI
5MKM

2MKE
,

can be expressed as

M
KI
5 r

0
=
h
� (uu0u0

h 1 y y0u0
h)5 r

0
=

h
� u

h
(uu0 1 yy0) . (7)
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Since this difference is an advection of interaction energy

KI 5 (uu0 1 yy0) defined inMurakami (2011), an integral of this

term over the global domain vanishes, resulting inMKM
5MKE

5
BTR.Therefore, themodified energy budget becomes identical to

the classical view in the global mean condition.

However, this is not the case for an energy diagram in a

limited domain, which is frequently used in the oceanographic

literature. The difference term,MKI
, may have a nonzero value

in such a case and plays an important role in energy transfer

between the mean flow and eddy perturbations. For MKM
’

BTR, the energy conversion through the barotropic instability

occurs locally, i.e., energy is transformed from mean kinetic

energy to EKE within a target region. In this case, the classical

Lorentz diagram and an associated barotropic energy conver-

sion rate correctly represent the eddy–mean flow interaction

even for a limited domain. However, in the case of MKM
6¼

BTR, a part of the energy is transported to or from the other

areas outside of the target region by the difference term, which

is called the nonlocal interaction in Chen et al. (2014, 2016).

Although this interaction energyKI vanishes in the time mean,

its flux does not. Horizontal distribution of the kinetic energy is

therefore affected by this energy flux, which is not evaluated

explicitly in the classical Lorentz diagram.

The interaction energy flux can be considered as seeds of

instability in some cases, as illustrated in Fig. 1. There are two

regions located face-to-face with different background velocity

fields (Fig. 1a); a uniform zonal current can be seen in regionA,

and zonal currents with meridional shear that allows baro-

tropic instability in region B. Consider a case in which a small

disturbance appears in region A. Since the necessary condition

for barotropic instability is not satisfied in region A, the EKE

there does not grow, i.e., BTR5 0. On the other hand,MKM
can

be generated if Reynolds stress associated with the disturbance is

spatially nonuniform. The difference between the two, i.e., energy

corresponding to MKM
, is transported out from region A as the

flux of the interaction energyMKI
into region B. It is this energy

flux that can be considered the seeds of the BTR, by which the

interaction energy is converted to the EKE via the background

field that provides the unstable condition in region B (Fig. 1b).

The corresponding modified energy diagram for this particular

case is shown in Fig. 1c. In regionB,KI transported from regionA

interacts with the mean shear flow to initiate barotropic energy

conversion, which requiresMKM
(shown as a gray arrow inFig. 1c)

to extract energy from the mean flow to eddy disturbances, if the

BTR appears. However, in reality, local barotropic instability can

occur alongside any other disturbance within region B, and the

energy conversions are more complicated.

b. Enstrophy budget

An eddy–mean flow interaction diagram for the potential

enstrophy can be obtained in the same way as that for the

modified Lorentz diagram. For quasigeostrophic oceanic

FIG. 1. Schematic diagrams showing horizontal distributions of mean flow and processes associated with eddy–

mean flow interactions in an idealized situation, (a) when interaction energy represented by the red wavy line is

generated from themean flow in the upstream region (regionA; the left half of each panel) and (b) when interaction

energy is used to generate eddy perturbations in the downstream region (regionB; the right half of each panel). The

gray arrows in (a) and (b) indicate background flows, with no horizontal shear of zonal flow in region A and with

positive meridional shear in region B. The condition of barotropic instability is assumed to be satisfied only in

region B. (c) Themodified energy diagrams for regions A and B in the above idealized case. The interaction energy

KI is transported out by the homogeneous background flow from region A [indicated as black arrows in (a)].

Associated disturbances transported into region B interact with the mean shear flow, causing the disturbances to

grow via barotropic conversion, i.e., the interaction energy together with MKM
in region B is converted into KE.
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motions, the quasigeostrophic potential vorticity (QGPV) q is

defined by

q5 (f 2 f
0
)1 z1 f

0

›s

›z
›hsi
›z

, (8)

where z denotes the relative vorticity, f is the Coriolis param-

eter, f0 is the Coriolis parameter averaged in the target region,

s is the potential density, and hsi is the potential density averaged
over time and space (Nakamura and Chao 2001; Qiu et al. 2008).

This definition of QGPV was previously used to investigate the

Kuroshio northern recirculation gyre generation mechanism by

Qiu et al. (2008). By neglecting the external forcing and subgrid

dissipation, the potential enstrophy equation for mean flow and

eddy perturbation can be obtained as below:

›

›t
e
M
1=

h
� (u � e

M
)52M

eM
, (9)

›

›t
e
E
1=

h
� (u � e

E
)5M

eE
, (10)

where eM 5 (1/2)q2 denotes the mean potential enstrophy,

eE 5 (1/2)q0q0 is the eddy potential enstrophy, MeM 5 q=h �
(u0q0) is the rate of change of mean potential enstrophy due to

eddy QGPV fluxes, andMeE 52u0q0 � =hq is the rate of change

of eddy potential enstrophy due to eddy QGPV fluxes. A

cascade type diagram of the enstrophy conversion can be

drawn using the Eqs. (9) and (10) (Fig. 2). In the diagram, the

mean flow loses its potential enstrophy at the rate ofMeM , some

of which is converted to eE through MeE, and the residual

MeI 5MeM 2MeE should be transported out to other regions.

Since MeI is equal to =h(qu0q0), we call this term the ‘‘inter-

action potential enstrophy flux.’’ Adding (9) to (10), the total

potential enstrophy equation is obtained as

›

›t
(e

M
1 e

E
)1=

h
� [u � (e

M
1 e

E
)]52M

eI
, (11)

indicating that the interaction potential enstrophy flux MeI is

the total enstrophy radiation through eddy–mean flow inter-

actions. Note that the interaction energy flux MKI
discussed in

section 2a is also considered as the transport of total kinetic

energy in the samemanner (see the appendix for more detailed

discussions).

It is worth mentioning that the mean potential vorticity can

be shifted by constant values while keeping the resultant

quasigeostrophic flow unchanged. On the other hand, this

constant shift changes the mean potential enstrophy eM. When

q is shifted by an arbitrary constant value fc, the corresponding

Eq. (11) should be modified as�
›

›t
(e

M
1 e

E
)1=

h
� [u � (e

M
1 e

E
)]

�

1 f
c

�
›

›t
q1=

h
� (uq)1=

h
� (u0q0)

�
52M

eI
. (11 0 )

The difference between (11) and (110) leads to

›

›t
q1=

h
� (uq)1=

h
� (u0q0)5 0, (12)

which is the mean potential vorticity equation. Since the third

term of the Eq. (12) is derived from the interaction potential

enstrophy flux term, MeI may correspond to the eddy vorticity

flux divergence in the potential enstrophy budget.

3. Interpretations of energy and potential enstrophy
budget in the Kuroshio Extension region

a. Data and basic structures of the KE jet

To demonstrate the differences in the energy transfer terms

in the classical and modified Lorentz diagrams and their in-

terpretations, results from an eddy-resolving OGCM named

OGCM for the Earth Simulator (OFES) (Masumoto et al.

2004), are used in the following analyses. OFES is based on the

ModularOceanModel version 3 (MOM3) developed atGFDL

(Pacanowski and Griffies 2000) and optimized for the massively

parallel computational architecture of the Earth Simulator. The

horizontal grid spacing is 0.18 3 0.18, and there are 54 vertical

levels. The 3-day, NCEP-run snapshots from 1993 to 2012, which

are forced byNCEP reanalysis products, are used [see Sasaki et al.

(2006, 2008) for more detailed model settings]. It has been shown

that OFES captures large-scale circulations as well as meso-

scale eddies realistically (e.g., Masumoto et al. 2004; Sasaki

et al. 2008; Masumoto 2010, and references therein), providing a

reasonable platform to examine the eddy–mean flow interac-

tions discussed in the previous section. We consider, for the

following analyses, time averaged values to be background

mean conditions, and deviations from them are defined as eddy

perturbations.

Horizontal distributions of the mean EKE and sea surface

elevation averaged from 1993 to 2012 calculated from the

OFES results are shown for the KE region in Fig. 3. The KE is

represented as the strong eastward meandering jet, whose

volume transport per unit width integrated in the depth ex-

ceeds 200m2 s21. In the region west of 1508E, the EKE has

large values along the stationary meandering Kuroshio jet.

After the EKE indicates its maximum around 1538E, the zonal
jet is stabilized in the region east of 1558E. The jet broadens

around 1558E, and northern and southern edges of the jet tend

to turn back westward in a region north and south of the jet,

respectively. The southern recirculation gyre (SRG), with the

anticyclonic circulation and associated higher sea surface height

(SSH), occupies the region 328–348N, 1408–1558E (Fig. 3b). The

cyclonic northern recirculation gyre (NRG) can be seen in

the region 358–388N, 1458–1538E, but the westward flow in the

FIG. 2. A schematic diagram indicating the enstrophy transfer

through eddy–mean flow interactions. Other elements such as ad-

vection are omitted. The mean flow loses its potential enstrophy

corresponding to MeM , some of which is converted into eddy distur-

bances byMeE while the rest is transported out to other regions byMeI .
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northern part is weaker and the lower SSH is less visible

compared to the SRG (Qiu et al. 2008; Aoki et al. 2016). All

these characteristics of the KE jet and the associated re-

circulation structures are consistent with previous results (e.g.,

Qiu et al. 2008; Qiu and Chen 2010, and references therein).

b. Energy conversion rates

Figure 4 shows spatial distributions of the three terms dis-

cussed in section 2 for the energy diagram, i.e.,MKM
,MKE

, and

MKI
. These energy conversion rates are integrated from the sea

surface down to the bottom through the water column. We

have confirmed, however, that results are almost the same if

we integrate only in the upper 600m where the strong jet and

associated eddy signals are confined. Figures in this subsection are

drawn with a spatial average over 0.58 3 0.58 boxes to reduce

small-scale noise.

Both MKM
and MKE

along the KE jet show large positive

values in the nearshore region (1408–1458E), whileMKM
shows

mostly negative values in the region east of 1508E (hereafter

called the downstream region). In between, alternating posi-

tive and negative values can be seen in the region between 1458
and 1508E (hereafter, the upstream region). Figure 5 indicates

the area-integrated MKM
and MKE

, together with MKI
, in each

region to show the above tendency clearly. Integration in the

meridional direction is taken for the latitude band between

328 and 388N. In the nearshore region, the area-integratedMKM

shows a large positive value of 12.2 3 109W, suggesting the

mean Kuroshio jet releases a large amount of its energy to the

eddy field. However, the magnitude of MKE
in the nearshore

region is 6.53 3 109W, which is 54% of the MKM
value, with

some negative regions (Fig. 4b). This indicates that some part

of the energy released by the mean Kuroshio jet is transported

outward from the nearshore region instead of locally trans-

ferred to the perturbation field within the region.

On the other hand, the area integrated MKM
in the down-

stream region reaches24.003 109W, while the area-integrated

MKE
is 1.57 3 109W, which is positive. This indicates that the

eddy perturbations cannot locally supply the kinetic energy for

the mean flow, suggesting another energy source exists forMKM
.

The above discrepancies betweenMKM
andMKE

correspond

to divergence or convergence of the interaction energy flux

MKI
(Fig. 4c). In the nearshore region, MKI

shows a large

FIG. 4. Horizontal distributions of (a)MKM
, (b)MKE

, and (c)MKI
.

Superposed black arrows show the mass transport per unit width of

the mean flow integrated from the ocean surface to the ocean

bottom. The three black boxes in (a) represent the nearshore (1408–
1458E), upstream (1458–1508E), and downstream (1508–1588E) re-

gions, in the latitude band of 328–388N used in the later analyses.

FIG. 3. Horizontal distribution of (a) the EKE and (b) the mean

sea surface elevation obtained from the OFES results for the pe-

riod of 1993–2011. The EKE is integrated from the ocean surface to

the ocean bottom. Black arrows represent horizontal volume

transport per unit width integrated through the water column.
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positive value, suggesting the release of the interaction energy

from the region. On the other hand, it tends to have negative

values in the downstream region, corresponding to an accu-

mulation of the interaction energy there. The interaction

energy generated in the nearshore region through eddy–

mean flow interactions is advected eastward into the up-

stream region in the form of MKI
, and the interaction energy

advected from the upstream region to the downstream region

is transferred to enhance the mean Kuroshio jet in the

downstream region. This is the reason whyMKM
has relatively

large negative values without local barotropic energy con-

versions. Since the classical Lorentz diagram depicts the local

energy gained by or released from the eddy perturbations,

the energy transfer as viewed from the mean flow differs from

it by an amount equal to MKI
.

In the upstream region between 1458 and 1508E, the im-

portant role played by the interaction energy flux in the mod-

ified energy diagram can also be seen, but within relatively

small regions. For example, the mean flow acceleration around

1458E is located mainly in the region of positive MKE
, sug-

gesting that remotely supplied energy is responsible there.

Consulting the MKI
distributions in Fig. 4c, the interaction

energy diverges from the nearshore region and converges at

around 1458E. It is likely that the energy source of the mean

flow acceleration at 1458E is located in the nearshore region.

The above examples clearly demonstrate that the arguments

solely based on the barotropic energy conversion rates, as in

discussions based on the classical diagram, may result in

misinterpreting energy relations in a limited region. For a

more accurate understanding of the eddy–mean flow interac-

tions, we should consider MKM
and MKE

from two viewpoints

and the nonlocal interaction represented by MKI
, and connect

the two conversion terms as formulated by Murakami (2011)

and Chen et al. (2014).

c. Potential enstrophy conversion rates

The potential enstrophy conversion rates shown in Fig. 6

provide a complementary view for the energy analysis. While

MeE andMeM show similar spatial distributions, there are some

differences between the two conversion rates, which is shown

as MeI in Fig. 6c. In the nearshore region, MeM has rather large

positive values, indicating a reduction of the potential ens-

trophy in the mean flow. The area integrated MeE over the

nearshore region is 0.24m3 s23, of which 88% is due to the local

mean potential enstrophy loss through MeM . The remaining

12%, i.e., 0.03m3 s23, is supplied from the convergence of the

interaction potential enstrophy flux. On the other hand, both

MeM and MeE show negative values in the region east of 1458E,
suggesting that the eddy–mean flow interactions tend to sta-

bilize themean flow, except for a region of weak positive values

around 1508E, where the mean flow bifurcates. Therefore, the

potential enstrophy budget also suggests mean flow decelera-

tion (acceleration) in the nearshore (downstream) region,

which is consistent with the energy analysis. On the other hand,

in the region between 1458 and 1508E, the enstrophy budget

indicates mean flow stabilization due to eddy forcing. This

difference from the energy analysis suggests that the combination

FIG. 6. As in Fig. 4, but for (a) MeM , (b) MeE, and (c) MeI .

FIG. 5. Area- and depth-integrated MKM
, MKE

, and MKI
in the

nearshore, upstream, and downstream shown in Fig. 4a. Depth

integration is conducted through the water column.
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of several viewpoints is necessary to reveal detailed processes of

eddy–mean flow interactions, an example of which will be shown

in the next section.

It should be noted here that the direction of the interaction

potential enstrophy transport is opposite to that of the in-

teraction energy flux. The interaction potential enstrophy

flux integrated between 1508 and 1658E (including both the

upstream and downstream regions) is 0.01 m3 s23, suggest-

ing that the total potential enstrophy is transported from the

upstream/downstream region to the nearshore region. This

may be of relevance to the wave maker mechanism suggested

by previous studies (Rhines and Holland 1979; Waterman and

Jayne 2011; Waterman and Hoskins 2013), in which the eddies

radiate Rossby waves toward the upstream region. This pro-

cess may be reflected in the direction of the interaction ens-

trophy flux and also related to the direction of the wave activity

flux, which is parallel to the direction of wave propagation in

the barotropic plane wave case.

4. Application to the northern recirculation gyre

The NRG may be one of the best phenomena for which

arguments based on the energy and potential enstrophy con-

version rates can be applied to better understand its dynamics.

It has been shown that the NRG spans from east of the Japan

Trench at around 1458E, to around 1568E west of the Shatsky

Rise, and is confined to the north by the subarctic boundary

along 408N within the depth range from 600m to around

1500m (e.g., Qiu et al. 2008) (Fig. 7a). Qiu et al. (2008) sug-

gested that the NRG was driven by the convergence of the

Reynolds stress, which accelerates the westward mean flow

north of the Kuroshio jet, particularly in the eastern part of

the NRG. Their potential vorticity budget also indicated

a possibility of the eddy-driven NRG. In addition, they

investigated a model based on the turbulent Sverdrup

equation by eddy PV forcing, 2= � (u0q0), obtained from the

outputs of another high-resolution model, and successfully

reproduced a realistic NRG.

In this section, we revisit NRG dynamics from the view-

points of energy conversion rates and potential enstrophy

conversion rates. To highlight the NRG characteristics, we

analyze horizontal distributions of various parameters at a

depth of 1342m. This choice of depth is arbitrary, as we have

confirmed that the spatial structure for each conversion rate is

essentially the same between depths of 1000 and 1500m.

a. Energy-based analysis

The horizontal distributions of the EKE magnitude and

Reynolds stress near the recirculation gyres are shown in Fig. 7.

Large EKE is confined in a latitude band of the meandering jet

and the EKEmaximum is located around the bifurcation point

of the jet at 1528E. A relatively small secondary maximum can

be seen at 378N, 1548E, to the west of the Shatsky Rise. The

zonal component of the Reynolds stress (Fig. 7b) shows that

the Kuroshio jet is decelerated (accelerated) by eddy forc-

ing in the nearshore (upstream) region. After a part of the

Kuroshio jet bifurcates to the north in the downstream region

around 1528E, the southern branch seems to be accelerated

by a convergence of the zonal Reynolds stress (region X in

Fig. 7b), while a divergence of the zonal Reynolds stress is

observed in the region around 37.58–39.58N, 1508–1558E (re-

gion Y in Fig. 7b) for the northern branch of bifurcated jet,

which turns westward within the region. The northern branch

of the bifurcated jet joins the westward flow centered at 398N
and results in the formation of the eastern part of NRG. This is

reflected in theMKM
distribution by a negative minimum at the

same location (Fig. 8a), suggesting that the NRG generation

can be explained by the energy conversion rates (see region Y

in Fig. 8a) as well as by the Reynolds stress. In addition, the

eddy acceleration of the southern branch of the jet is also

captured in MKM
with a negative minimum centered at 338N,

1528E (see region X in Fig. 8a).

The analysis of energy conversion rates also suggests the

importance of the nonlocal eddy–mean flow interactions. In

particular,MKI
plays a role in generating the structure of NRG

together with the local eddy–mean flow interaction indicated

by MKE
(Fig. 8b). Although the local eddy–mean flow inter-

action mainly accelerates the mean westward flow in region Y,

positive MKE
values are also observed at around 388N, 1548E.

This mean flow energy loss is canceled out by the interaction

energy flux convergence, as seen below.

The horizontal distributions of MKI
(Fig. 8c) indicate that

there is a region of the interaction energy flux convergence

FIG. 7. Horizontal distributions of (a) the EKE and (b) zonal

component of the Reynolds stress at a depth of 1342m. Positive

values in (b) correspond to eastward forcing. The black arrows

indicate horizontal velocities at a depth of 1342m. The white

contours in (a) indicate the 5000-m isobath. The region surrounded

by this contour to the east of 1558E corresponds to the Shatsky

Rise. The Japan Trench off the Japan archipelago is also repre-

sented by the 5000-m isobath. The zonal eddy forcing accelerates

the mean flow in both region X and region Y.
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between 388N, 1508E and 408N, 1548E. This area corresponds

to the region where the northward bifurcated flow joins the

westward flow to form the cyclonic circulation of the eastern

part of theNRG (Fig. 8a). The interaction flux vectors over this

area point westward and can be traced back to the east to a

region of interaction energy flux divergence around 1578E,
just northwest of the Shatsky Rise. This interaction energy,

together with MKE
, is converted to mean kinetic energy and

accelerates the westward flow in the region of negative MKI
.

Thus, the energy analysis can provide additional information

about nonlocal effects likely associated with the local topog-

raphy, which would be difficult to detect only from the mo-

mentum viewpoint.

It is worth noting that the westward eddy forcing inside the

NRG, indicated by the negative minimum of Reynolds stress

convergence, has little effect on the kinetic energy (Figs. 7b

and 8a). However, eddy variability also affects horizontal

structure around the center of the NRG through the po-

tential enstrophy transport, which will be discussed in the

next subsection.

b. Potential-enstrophy-based analysis

Horizontal distributions of mean potential enstrophy and

convergence of the QGPV flux at 1342-m depth are shown in

Fig. 9. The mean QGPV distribution indicated by the black

contours in Fig. 9 well reflects the Kuroshio jet and the struc-

tures of the recirculation gyres. In the region west of 1508E,
the QGPV front exists along the strong Kuroshio jet. The

meridional gradients of the QGPV (not shown) change their

sign at the flanks of both sides of the jet, satisfying the nec-

essary conditions for an unstable jet. The QGPV contours

broaden in the downstream (east of 1508E) region, and the jet

becomes stable there as discussed in Waterman and Jayne

(2011). On the southern (northern) flank of the jet, there is a

positive (negative) maximum of QGPV associated with the

southern (northern) recirculation gyre. Reflecting the closed

QGPV structures, the mean potential enstrophy distribution

has maxima located within the recirculation gyres. Influences of

eddy perturbations on the mean flow through the eddy QGPV

flux can be identified by comparing the mean QGPV distri-

bution with the convergence of the QGPV fluxes (see Fig. 9b).

FIG. 9. Horizontal distributions of (a) the mean potential ens-

trophy and (b) the convergence of the QGPV flux at a depth of

1342m in color shades. Black contours in (a) and (b) represent the

QGPV with a contour interval of 0.5 3 1025 s21. Dashed contours

indicate negative QGPV values. Black arrows in (a) show hori-

zontal velocities at 1342-m depth.

FIG. 8. Horizontal distributions of (a)MKM
, (b)MKE

, and (c)MKI

near the recirculation regions at a depth of 1342m. Positive values

represent the loss of the mean kinetic energy, the gain of the EKE,

and the divergence of the interaction energy flux, respectively.

Black arrows in (a) and (b) show horizontal velocities at a depth of

1342m, while those in (c) indicate the interaction energy flux. Note

that length of the black arrows in (c) is drawn to be proportional to

the square root of the interaction energy flux amplitude to clearly

illustrate weaker fluxes. Region X and region Y in (a) are the same

regions as in Fig. 7b.
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In the nearshore region between 1428 and 1468E, convergence
(divergence) of the QGPV fluxes appears along the northern

(southern) half of the Kuroshio jet, indicating that the eddy

components tend toweaken themeanQGPV front by increasing

(decreasing) the meanQGPV in the northern (southern) region,

associated with the unstable nature of the jet. On the other

hand, relatively large negative values of the eddy QGPV flux

convergence are observed inside the NRG, with large minima

located around (378N, 1488E), (388N, 1548E), and (368N,

1578E), and a smaller one at (378N, 1468E). The divergence of
the eddy QGPV flux corresponds to enhancement of the

mean potential enstrophy, which supports the suggestion by

Qiu et al. (2008) that the NRG could be the eddy driven re-

circulation. To the south of the Kuroshio jet, large positive

values of2= � (u0q0) can be seen between 1508 and 1558Ewithin

the latitude band of 328–348N. Contrary to the NRG situation,

the location of this maximum is mostly out of phase with the

potential enstrophy maximum associated with the SRG, sug-

gesting weaker eddy forcing in the SRG region (Qiu et al. 2008).

The potential enstrophy conversion rates MeM also well

capture the eddy effects on the NRG structure (Fig. 10a). In

the nearshore region and the northern half of the jet, MeM

shows positive values, suggesting the mean KE jet releases a

large amount of its potential enstrophy to the eddy field. The

eddy field, then, enhances the mean flow at the flanks of the jet,

shown as regions with negative values in Fig. 10a. As in the case

of the mean QGPV analysis, the eddy–mean flow interaction

stabilizes the NRG with negative MeM , while the center of the

southern recirculation gyre is misaligned with the negative

minimum of MeM .

Since the mean QGPV is highly homogenized inside the

recirculation region, eddy perturbations do not easily grow

locally. In fact, the meridional gradient of the mean QGPV

does not change its sign in the regions outside of the Kuroshio

jet (not shown). While MeM shows relatively large values

outside of the Kuroshio jet, particularly in and near the re-

circulation gyres, large signals of MeE are confined along the

Kuroshio jet (Fig. 10b). The differences between the two

conversion rates are related to the interaction potential ens-

trophy fluxes, by which the potential enstrophy is transported

from one place to another. Figure 10c clearly indicates that the

interaction potential enstrophy fluxes that converge within the

NRG originate from the divergence region in the Kuroshio jet

between 1468 and 1508E, where the EKE maximum exists

(Fig. 7a). The interaction potential enstrophy flux also radiates

from the same region toward the northern part of the SRG,

suggesting that the eddy field contributes to stabilizing the

SRG to some extent. Note that the interaction potential ens-

trophy fluxes in the eastern part of NRG can be traced back to

the divergence region of the interaction potential enstrophy

fluxes in the Kuroshio jet between 1538 and 1568E. In the

barotropic quasigeostrophic zonal jet case, it has been under-

stood that eddy perturbations radiate eddy QGPV flux out-

ward from the EKE maximum region and generates the NRG

and SRG (Waterman and Jayne 2011; Waterman and Hoskins

2013). The same mechanism can be considered to be non-

local eddy–mean flow interactions in our potential enstrophy

analysis.

5. Summary and conclusions

We have shown the detailed interpretations of terms in the

modified Lorentz diagram, especially focusing on the roles

played by the interaction energy flux, as a possible diagnostic

tool for eddy–mean flow interactions in a limited oceanic re-

gion. The barotropic conversion rate in the classical Lorentz

diagram considers only a local eddy–mean flow interaction. As

documented in Chen et al. (2014, 2016), however, there exist

both local and nonlocal eddy–mean flow interactions in the

ocean. The energy released from the mean flow is not com-

pletely used locally to enhance an eddy field through the bar-

otropic instability process. The remaining energy, once stored

FIG. 10. Horizontal distributions of (a)MeM , (b)MKE
, and (c)MeI

at a depth of 1342m. Positive values indicate the mean potential

enstrophy loss, the eddy potential enstrophy gain, and the diver-

gence of the interaction potential enstrophy flux, respectively.

Black contours in all three panels show the QGPV distribution

with the contour interval of 0.5 3 1025 s21. Dashed contours in-

dicate negative QGPV values. Black arrows in (c) indicate the

interaction enstrophy flux. The length of the black arrows is drawn

to be proportional to the square root of the interaction potential

enstrophy flux amplitudes to clearly illustrate weaker fluxes.
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in the form of interaction energy, is transported out from the

domain in the form of interaction energy flux, and an eddy

perturbation field can interact using this interaction energy

with the background field in specific regions where the inter-

action energy flux converges. This suggests that the interaction

energy can be considered as a reservoir of nonlocal eddy–mean

flow interactions, and as a seed for eddy–mean flow interac-

tions in other regions in a sense. Although the relation to a

similar expression using the EP fluxes has already been men-

tioned in previous studies, we have shown for the first time the

relation between the energy diagram and the potential ens-

trophy diagram, which play complementary roles in under-

standing eddy–mean flow interactions in the ocean.

The evaluation of each term in the modified energy flux dia-

gram and the potential enstrophy diagram is conducted for the

KuroshioExtension region as an example featuring strongWBC

jets. It is found that acceleration ofmean flow in the downstream

region is partly accomplished by the convergence of interaction

energy fluxes. The barotropic conversion rate in the downstream

region cannot supply all the kinetic energy gained by the mean

flow through eddy–mean flow interaction, and this energy deficit

is thus compensated by the interaction energy transported from

the upstream region. It is this interaction energy flux that also

explains the horizontal distribution of EKE.

The potential enstrophy budget also suggests the mean flow

stabilization in the downstream region. One important differ-

ence between the energy diagram and the potential enstrophy

diagram is the directions of the interaction fluxes. While the

interaction energy flux converges in the downstream region,

the interaction potential enstrophy flux radiates from the

downstream region and converges in the nearshore region.

Since the interaction energy flux is related to the Rossby

propagation in the idealized case as shown in the appendix, this

may be related to the Rossby wave radiation from the EKE

maximum near the boundary between the upstream and

downstream regions.

Finally, to highlight the advantage in combining different

viewpoints for analysis of the eddy–mean flow interactions, the

concepts of energy and potential enstrophy diagrams are ap-

plied to the NRG in the Kuroshio Extension region. These

analyses provide further information about the roles of non-

local eddy–mean flow interactions, adding to the previous

understanding based on momentum and potential vorticity

budget (Qiu et al. 2008). While the local energy conversion

accelerates the northeastern part of the NRG with the aid of

the relatively small nonlocal interaction energy flux conver-

gence, the interaction potential enstrophy flux convergence is

crucial around the center of the NRG.

Each method has its own advantages and limitations. They

can provide insights from different viewpoints that comple-

ment each other. Therefore, the combined use of several

methods is required to obtain a comprehensive view of eddy–

mean flow interactions, particularly in a limited region.
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APPENDIX

Other Interpretations of the Interaction Energy Flux

Since the interaction energy KI vanishes in the time-averaged

mean, it is not easy to give a physical meaning to the interaction

energy flux in a definitive way. Here, the relationship between the

energy conversion rate and the Eliassen–Palm fluxes are discussed.

We also show two different interpretations of the interaction en-

ergy flux divergence MKI
: one by the wave activity conservation

law and the other utilizing the total energy conservation law. In this

appendix, we drop the reference density r0 from the energy

equations and associated conversion rates for simplicity.

a. Link to the Eliassen–Palm fluxes

We introduce the barotropic EP flux vectors (Murakami

2011) to briefly review the relation between MKM
and the EP

flux vectors for completeness, and to show a relation between

BTR and the Reynolds stress anisotropy. The EP flux concept

succeeds in depicting eddy–mean flow interactions such as

the standing meanders of the Antarctic Circumpolar Current

(Thompson and Garabato 2014) or the blocking events in the

Westerlies (Trenberth 1986). The barotropicEPflux vectors shown in

Murakami (2011), which are the barotropic version of Trenberth’s

generalized EP flux vectors (Trenberth 1986), are written as

E
u
5

�
1

2
(y02 2 u02),2u0y0

�
, (A1)

E
y
5

�
2u0y0,2

1

2
(y02 2u02)

�
. (A2)

Using these expressions of the EP flux,MKM
can be rewritten as

M
KM

52(u=
h
� E

u
1 y=

h
� E

y
)1 u

h
� =

h
K

E
. (A3)

Hereafter, we denote the first group of two terms in parentheses

on the right-hand side, 2(u=hEu 1 y=hEy), as MEP, and the last

term of the right-hand side, uh � =hKE, as MEKE. While there are

several definitions for the EP flux (e.g., Plumb 1985a; Trenberth

1986; Thompson and Garabato 2014), the barotropic EP flux vec-

tors in the formof (A1) and (A2) are helpful to interpret the energy

conversion rate. This definition of EP flux corresponds to the an-

isotropic part of the Reynolds stress andMEP can be considered as

theworkdoneby theEPflux.On theother hand,MEKE is related to

an isotropic part of the Reynolds stress. Since the EKE does not

change the mean PV, the influence of the EKE term on the mean

flow is often neglected as noneffective forcing in the transformed

Eulerian mean (TEM) framework (e.g., Waterman and Jayne

2011), while the pressure forcing associated with the EKE con-

tributes to the mean momentum balances (Aoki et al. 2016).

Similarly, MKE
is decomposed into two or three parts as

shown below:

M
KE

5 (E
u
� =

h
u1E

y
� =

h
y)2K

E
=
h
� u

h
, (A4)

5R
1
D

1
1R

2
D

2
2K

E
=

h
� u

h
, (A5)

where D1 5 (›u/›x)2 (›y/›y), D2 5 (›u/›y)1 (›y/›x), R1 5
(1/2)(y02 2 u02), and R2 52u0y0. Here D1 and D2 are values
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related to the deformation of two-dimensional mean velocity

fields (Okubo 1970; Weiss 1991; Holton and Hakim 2013). D1

is a pure stretching term, by which a square fluid element de-

forms into a rhombus. Positive (negative) D1 indicates a flow

field condition for which a fluid element tends to be stretched

along the x (y) axis. On the other hand, R1 is related to the

anisotropy of eddies (Hoskins et al. 1983; Marshall et al. 2012;

Waterman andHoskins 2013;Waterman and Lilly 2015). Positive

R1, in which eddies tend to have an elongated shape along the y

axis [see Waterman and Hoskins (2013) in detail], disturbs the

mean flow and causes it to stretch more in the meridional direc-

tion than in the zonal direction. Therefore, a positive value of the

product ofD1 and R1 implies the extraction of the kinetic energy

from the mean field by weakening the mean flow stretching.

Likewise,R2 indicates ameridional tilting of eddies, and a positive

value of R2 corresponds to an elongation in the forward direction

(Waterman andHoskins 2013). This term, together with the shear

of themean flowD2, acquires energy from themean flow through

relaxation of the shear in the mean flow. Finally, =h � uh in the

Eq. (A5) represents the expansion of fluid elements without

changing their shapes. Since an isotropic component of Reynolds

stress, i.e., EKE, also works to expand eddies, the term 2KE=h �
uh indicates the expansion of the mean field.

Considering all together the above three terms in the

Eq. (A5), MKE
can be considered as an index that quantifies

eddy effects on the deformation of background fields. IfMKE
is

positive (negative), eddies grow (dissipate) while weakening

(strengthening) the mean fields. A parameter for anisotropy

gm was previously defined in Hoskins et al. (1983) as

g
m
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52(y02 2u02)

2
1 (u0y0)

2
q

EKE
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 1R2
2

p
EKE

, (A6)

but its physical interpretation had not been clearly indicated.

The above formulation of MKE
in Eq. (A5) demonstrates that

gm can be considered as a ratio of the anisotropic Reynolds

stress that increases the anisotropy of mean flow to the EKE

effect that increases isotropy of mean flow.

Finally, it is worth noting thatMKI
is rewritten by the EP flux

vectors, except for the noneffective forcing term, as

M
KI
5=

h
� (2uE

u
2 yE

y
2u

h
K

E
) . (A7)

In the case of a two-dimensional barotropic flow, the EP flux

term (2uEu 2 yEy) is also included in the radiative wave ac-

tivity flux (Plumb 1986). The wave activity and its time deriv-

ative are a measure of wave amplitude and eddy-transient

effects, respectively (Andrews et al. 1987). The interaction

energy flux, therefore, can be considered as a measure of wave

activity emission. If MKM
’ BTR, i.e., local eddy–mean flow

interaction dominates and noneffective eddy forcing can be

neglected, the wave activity is steady. Otherwise, the wave

activity is modified by the nonlocality of eddy–mean flow in-

teractions (see next section for more detailed discussions).

b. Wave activity conservation (pseudo-momentum)

As a different way to understand the interaction energy flux,

we consider the wave activity conservation law for small-amplitude

disturbances in the beta-plane quasigeostrophic (QG) system.

Although the assumption of small disturbances may not be

adequate for the Kuroshio Extension region, it is useful for

obtaining the relationship between the interaction energy flux

divergence MKI
and the wave activity, which is widely used in

atmospheric wave–mean flow interaction theories (Andrews

et al. 1987, and references therein). Our calculation mainly

follows the procedure shown in Plumb (1986).

The streamfunction for QG flow is represented as c 5 p/f,

where p is pressure and f 5 f0 1 by is the Coriolis parameter,

and the QG potential vorticity is written as

q5=2
hc1by1

›

›z

f 20
N2

›c

›z
, (A8)

where N is the buoyancy frequency and =h 5 (›/›x, ›/›y).

Suppose that the eddy perturbation term is small enough, i.e.,

q 5 Q 1 q0, where q0 � Q. Then, the linearized potential

vorticity equation for QG flow becomes

›q0

›t
1U

›q0

›x
1V

›q0

›y
1 u0 ›Q

›x
1 y0

›Q

›y
5 S0 , (A9)

and the enstrophy equation is derived as

›e

›t
1U

›e

›x
1V

›e

›y
1u0q0 ›Q

›x
1 y0q0 ›Q

›y
5S0q0 , (A10)

where e5 (1/2)q0q0 is the eddy potential enstrophy,U5 (U, V,

0) is the background flow, Q is the background potential vor-

ticity, and S0 is the nonconservative eddy source of potential

vorticity. It is further assumed that the background flow is

conservative, i.e., U(›Q/›x)1V(›Q/›y)5 0, and slowly varies

in space, to ensure following relations:

1
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, (A11)
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and
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The relation (A11) means that the variation of background

potential vorticity is relatively small compared to the ens-

trophy variation along the background mean flow. The as-

sumptions (A12) and (A13) indicate that the direction of

background potential vorticity gradient does not change

abruptly.
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Under these assumptions, we can obtain the wave activity

conservation equation

›A

›t
1=

h
� (UA)1= �M

R
5

S0q0

j=
h
Qj , (A14)

where A 5 e/j=hQj is the pseudo-momentum, i.e., the wave

activity. The radiative wave activity flux is written as
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where g 5 1 (g 521) if the background flow is pseudo-eastward

(pseudo-westward). Here, pseudo-eastward (pseudo-westward)

means the backgroundmean flow is perpendicular to=hQ, with

the larger Q value on its right (left) hand side, i.e.,

n5
=

h
Q

j=
h
Qj5

g(2V,U)

jUj . (A16)

In the almost-plane wave limit (Plumb 1985b), the wave

activity fluxMR is connected to the group velocity theory. If the

streamfunction has the wave form

c0 5c
0
sin(kx1 ly1mz2vt) , (A17)

the dispersion relation of the Rossby wave is derived as

v5kU1 lV1

›Q

›x
l2

›Q

›y
k

k2 1 l2 1
f 20
N2

m2

. (A18)

With this dispersion relation, simple calculation shows

M
R
5 (c

g
2U)A , (A19)

where cg 5 (›v/›k, ›v/›l, ›v/›m) is the group velocity. Since

A5 (1/4)[k2 1 l2 1 (f 20 /N
2)m2]

2
/j=hQj is positive definite, MR

is everywhere parallel to the group velocity relative to the

mean flow.

For the barotropic flow case, the MR is connected to the

interaction energy flux

M
R
52

g

jUjF
(EP) , (A20)

where F(EP) 52(UEu 1 VEy) is the EP flux component of the

interaction energy flux in the previous section [see Eq. (A7)].

From the relation (A20), the diabatic component of the

interaction energy flux is parallel to the wave activity flux,

and therefore the interaction energy flux corresponds

to the momentum transport of the waves. Moreover,

multiplying (A14) by jUj, under the assumption of a slowly

varying magnitude of the background velocity compared to

that of the wave activityA, gives the modified wave activity

equation

› ~A

›t
1=

h
� (U ~A)1=

h
� [2gF(EP)]5

jUjS0q0

j=
H
Qj , (A21)

where ~A5 jUjA is the modified wave activity flux. Using

(A19),2gF(EP) is shown to be the radiative flux of themodified

wave activity ~A

2gF(EP) 5 (c
g
2U) ~A . (A22)

Thus, the interaction energy flux neglecting noneffective

eddy forcing represents the wave propagation and its momentum

transport. If the barotropic eddy–mean flow interaction occurs

nonlocally, i.e.,MKM
6¼MKE

, the wave activity radiates from the

parcel flowing along the background field. Therefore, nonlocal

eddy–mean flow interactions can be considered as the wave

radiation and its momentum transport.

c. Total energy conservation

The total kinetic energy conservation can be written as

›E
›t

1= � (F1 uE)5 (forcing) , (A23)

where E5 (KM 1KE) is the total energy, and

F5

"
u0 1
2
(u02 1 y02)

#
1 (u p1u0p0)1 r

0
(uu0u0 1 y y0u0)

5F
eddy

1up1F
I

(A24)

is the energy flux that consists of the eddy–eddy interaction

energy flux Feddy, the pressure work up, and the eddy–mean

flow interaction flux FI. The energy equation takes the form

of a conservation equation, where the total (i.e., radiative

plus advective) energy flux F1uE represents the local en-

ergy transport. The influence of eddy–mean flow interaction

in this energy transport appears only in the FI term, except

for the advection terms. The horizontal divergence of the

interaction flux, = � FI, corresponds to the interaction energy

flux divergence MKI
in the main text (see section 2a). Note

that if energy conversion only occurs locally, i.e.,MKI
5 0, the

convergence of interaction energy flux is also zero, i.e., = �
FI 5 0, and therefore, eddy–mean flow interaction does not

affect the total energy distribution. This indicates that the

interaction energy flux divergence appearing in the modified

Lorentz diagram represents the transport of total energy due

to the nonlocality of eddy–mean flow interaction. In this

sense, wemay callMKI
the energy flux divergence of the eddy–

mean flow interaction instead of the interaction energy flux

divergence.
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