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ABSTRACT

Mechanisms driving the North Atlantic Meridional Overturning Circulation

(AMOC) variability at low-frequency are of central interest for accurate cli-

mate predictions. Although the subpolar gyre region has been identified as

a preferred place for generating climate time scales signals, their southward

propagation remains under consideration, complicating the interpretation of

the observed time series provided by the RAPID-MOCHA-WBTS program.

In this study, we aim at disentangling the respective contribution of the local

atmospheric forcing from signals of remote origin for the subtropical low-

frequency AMOC variability. We analyze for this a set of four ensembles of a

regional (20◦S-55◦N), eddy-resolving (1/12◦) North Atlantic oceanic config-

uration, where surface forcing and open boundary conditions are alternatively

permuted from fully varying (realistic) to yearly repeating signals. Their anal-

ysis reveals predominance of local, atmospherically forced signal at interan-

nual time scales (2-10 years), while signals imposed by the boundaries are

responsible for the decadal (10-30 years) part of the spectrum. Due to this

marked time scale separation, we show that, although the intergyre region

exhibits peculiarities, most of the subtropical AMOC variability can be un-

derstood as a linear superposition of these two signals. Finally, we find that

the decadal scale, boundary forced AMOC variability has both northern and

southern origin, although the former dominates over the latter, including at

the site of the RAPID array (26.5◦N).
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1. Introduction37

The Atlantic Meridional Overturning Circulation (AMOC) plays a central role in climate by38

redistributing heat, freshwater and carbon. Its strength is correlated with climate indices such as39

the Atlantic Multidecadal Variability (AMV, Kushnir 1994; Schlesinger and Ramankutty 1994;40

Kerr 2000), (Knight et al. 2005; McCarthy et al. 2015b), as well as to the occurrence of regional41

weather events. Examples are precipitations over Europe (Sutton and Dong 2012) and North42

Africa (Zhang and Delworth 2006) and the hurricane activity in North America (Goldenberg et al.43

2001; Hallam et al. 2019). Thus, understanding the mechanisms pacing AMOC variability at44

climate time scales is of central interest for climate predictions. Decadal AMOC variability is45

often argued to be paced by the North Atlantic subpolar gyre due to the longer time scales involved46

in its dynamics (Wunsch and Heimbach 2013; Menary et al. 2016; Zhang 2017). But subpolar-47

subtropical AMOC connectivity remains an open question, with potentially complex interactions48

between the Deep Western Boundary Current (DWBC) and the upper Gulf Stream. Placing the49

focus on the subtropical gyre where continuous measurements of the AMOC have been carried out50

since 2004 by the RAPID-MOCHA-WBTS program (McCarthy et al. 2015a), we wish to further51

categorize the low-frequency AMOC variability of this region as locally or remotely paced.52

A prevailing concern regarding mechanisms driving the low-frequency AMOC variability in53

the subtropical gyre is associated with the southward propagation of density anomalies from the54

subpolar gyre. While the subtropical gyre is dominated by interannual AMOC variability, the sub-55

polar gyre is dominated by decadal time scales dynamics (Balmaseda et al. 2007; Wunsch 2013;56

Wunsch and Heimbach 2013), such as deep water formation rates or the longer time it takes57

for baroclinic Rossby waves to cross the basin at higher latitudes (Wunsch and Heimbach58

2013). This make the the subpolar gyre a preferred region for the generation of decadal time59
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scales signals. Of particular importance is the southward propagation of dense water masses,60

which are expected to propagate to the subtropical gyre through the DWBC. As nicely reviewed61

by Biastoch et al. (2008a), mechanisms involved in the southward propagation of signals within62

the DWBC include a rapid exit of newly generated deep water masses out of the subpolar gyre63

and a fast equatorward communication through coastal Kelvin waves (Kawase 1987; Johnson and64

Marshall 2002; Deshayes and Frankignoul 2005; Hodson and Sutton 2012). Those southward trav-65

eling coastally trapped density anomalies thus lead to a zonal gradient across the North Atlantic66

basin, pacing an AMOC variability through geostrophic adjustment (Hirschi and Marotzke 2007;67

Cabanes et al. 2008; Tulloch and Marshall 2012; Buckley et al. 2012; Jamet et al. 2016).68

However, recent studies cast doubt on such a simple southward pathway of density anomalies69

from the subpolar to the subtropical gyre. Observations do not reveal a straightforward connec-70

tion between deep water masses production at high latitude and their export further south (Schott71

et al. 2004; Lozier 2010). Both observational (Bower et al. 2009) and numerical (Zou and Lozier72

2016) float experiments suggest rather that recently formed deep water masses in the Labrador Sea73

mainly recirculate within the subpolar gyre, and that only a small fraction transit further south, a74

dynamics recently supported by the first 21 months of the OSNAP observing system (Lozier et al.75

2019). Additionally, a few studies have highlighted the complex dynamics involved in the south-76

ward propagation of the DWBC when crossing the upper, northward flowing Gulf Stream, with77

strong vertical interactions (Spall 1996a,b; Bower and Hunt 2000; Zhang and Vallis 2007; Andres78

et al. 2016).79

Regarding southern interactions, Biastoch et al. (2008b) highlighted the potential contribution80

of the Agulhas linkage for the AMOC variability in the North Atlantic subtropical gyre. Using a81

two-way nested global configuration with refined horizontal resolution in the Agulhas region, they82

show that the meso-scale dynamics of this region contributes to about 0.2 Sv (1 Sv = 106 m3 s−1)83
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of the lower limb AMOC decadal variability, which may well contribute to about 10-20% of84

the ∼O(1 Sv) low-frequency variability measured by the RAPID array (Smeed et al. 2014,85

2018). Such a potential contribution of the southern Atlantic for the AMOC variability in the86

North Atlantic subtropical gyre has also been recently underscored by Leroux et al. (2018).87

AMOC variability in the subtropical gyre also responds to the local atmospheric forcing. On88

short time scales (month-to-years), the Ekman adjustment of the ocean to local wind stress has89

been proposed as the leading mechanism (Hirschi and Marotzke 2007). At longer time scales,90

the baroclinic shear adjustment and the gyre interaction with an irregular bathymetry dominates91

(Häkkinen 2001; Cabanes et al. 2008). Thus, a measure of the AMOC as provided by the RAPID92

array would likely be a potentially complex combination of signals of different origin. Through93

numerical sensitivity experiments to surface forcing, Biastoch et al. (2008a) however have shown94

that the variability of the maximum AMOC under realistic forcing can be understood as a linear95

combination of an interannual variability driven by local wind forcing, and a decadal variability96

driven by buoyancy forcing in the Labrador Sea. This would suggest that interactions between the97

ocean response to the local atmospheric forcing and signals of remote origin are weak, making98

attribution in the real ocean easier. But they have also pinpointed the sensitivity of this linear99

superposition to the presence of oceanic eddies. We thus propose here to further analyze this100

linear superposition in such an eddying regime.101

To further disentangling the respective contribution of the local atmospheric forcing for the102

AMOC variability in the North Atlantic subtropical gyre from the signals generated in remote103

regions (such as North Atlantic subpolar or Agulhas regions), we analyze the model outputs of 4104

different regional ocean model configurations which differ in their forcing at the surface and at105

the open boundaries. Details of these simulations are given in Section 2. In order to explicitly106

resolve the oceanic meso-scale dynamics (important for many oceanic processes, and in particu-107
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lar involved in the evolution of water mase properties in the DWBC downstream of Grand Bank108

(Bower and Hunt 2000; Lozier 2010)), we have performed these simulations at eddy-resolving109

(1/12◦) horizontal resolution. With such a resolution, a significant fraction of the AMOC variabil-110

ity is expected to be intrinsic, that is, driven by processes other than the forcing and with a random111

phase (Grégorio et al. 2015; Leroux et al. 2018; Jamet et al. 2019). We have thus carried out these112

simulations with an ensemble strategy, and we illustrate the benefits of this strategy to iden-113

tify AMOC responses to external forcing in an eddying ocean. We discuss in the following114

the results of the ensemble mean, which reflects the oceanic response to external forcing (surface115

and boundaries). We first extract the leading modes of the forced AMOC variability in our four116

ensembles, and compare their spatial pattern and their spectral content (Section 3). We then ana-117

lyze full time series and assess the assumption of linearity in the combined effect of surface and118

boundary forced signals (Section 4). We discuss the intrinsic AMOC variability simulated by our119

different ensembles in Section 5, and analyze the respective contribution of northern and southern120

open boundaries for driving boundary forced AMOC variability in Section 6. We summarize and121

discuss our results in Section 7.122

2. Methods123

a. Model, experiments and processing124

We use the regional North Atlantic configuration of the Massachusetts Institute of Technology125

General Circulation Model (MITgcm, Marshall et al. 1997) described in Jamet et al. (2019b). It126

extends from 20◦S to 55◦N with a horizontal resolution of 1/12◦ and 46 layers in the vertical,127

ranging from 6 m at the surface to 250 m at depth. Open boundary conditions are applied at the128

side of our domain, such that oceanic velocities (U, V) and tracers (T, S) are restored with a 36129
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minutes relaxation time scale toward oceanic state derived from the 55-year long 1/12◦ horizontal130

resolution ocean-only global NEMO simulation ORCA12.L46-MJM88 (Molines et al. 2014). To131

insure stability at the boundary, a sponge layer is applied to the two adjacent grid points where132

model variables are restored toward boundary conditions with a 1 day relaxation time scale. Al-133

though these relaxation time scales are relatively short, no adverse effects were apparent134

upon inspection. Open boundary conditions are applied every 5 days and linearly interpolated in135

between.136

At the surface, the ocean model is coupled to an atmospheric boundary layer model (Cheap-137

AML, Deremble et al. 2013). In CheapAML, atmospheric surface temperature and relative hu-138

midity respond to ocean surface structures by exchanges computed according to the COARE3139

(Fairall et al. 2003) flux formula, but are strongly restored toward prescribed values over land.140

Other variables (downward longwave and solar shortwave radiation, precipitations) are prescribed141

everywhere. Atmospheric reanalysis products used in CheapAML originate from the Drakkar142

forcing set (DFS4.4, Brodeau et al. 2010; Dussin et al. 2016), consistent with the atmospheric143

forcing employed in the ORCA12.L46-MJM88 global simulation used to derive the open bound-144

ary conditions.145

The model is first spun-up for 5 years (1958-1963) from the ORCA12.L46-MJM88 initial con-146

ditions (derived from Levitus 1998 climatology) under realistic forcing. Then, all ensembles147

are integrated forward in time for 50 years (1963-2012) with a 12-member ensemble strategy. The148

12 initial conditions have been constructed through 1-year long simulations under 1963 forcing149

initialized with 2-days apart ocean states from January, 1963. These initial conditions are meant150

to reflect the spread induced by the growth of small, dynamically consistent perturbations decorre-151

lated at seasonal time scales. This set of 12 initial conditions is used across the four different152

ensembles, such that initial perturbations are the same in all experiments. Further details153
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on the configuration can be found in (Jamet et al. 2019b, Supporting Informations). We focus154

here our analysis on the ensemble mean statistics, which we interpret as the oceanic response to155

external forcing (surface and boundaries). This ensemble means are thus referred to as the forced156

variability in the following. The departure from this ensemble mean, i.e. the ensemble spread due157

to intrinsic variability, is discussed in Section 5.158

To disentangle the respective contribution of open boundaries and surface forcing in driving159

oceanic variability within our regional North Atlantic domain, we have alternatively permuted160

open boundaries and surface forcing from fully varying (realistic) to yearly repeating signals. The161

realistic ensemble (referred to as ORAR hereafter, for Open boundary conditions Real and At-162

mosphere Real) uses the full spectrum of open boundary conditions and surface forcing. This163

ensemble represents the reference test case associated with realistic conditions, which has been164

used by Jamet et al. (2019b) to separate forced and intrinsic AMOC variability. Results from the165

three other ensembles are compared to this reference experiment. To isolate the oceanic variability166

that is locally forced by the interannual-to-decadal atmospheric dynamics, climatological open167

boundary conditions are applied to the ensemble OCAR (Open boundary conditions Climatologic168

and Atmosphere Real). These climatological open boundary conditions have been constructed as169

a climatological average for the period 1963-2012, i.e. 5-day open boundary conditions are170

averaged across that period to provide a mean representation of the seasonal cycle. They171

repeat every year, such that no signals at interannual and longer time scales are imposed by the172

boundaries. By contrast, to isolate the imprint of open boundaries, yearly repeating atmospheric173

forcing is applied to the ensemble ORAC (Open boundary conditions Real and Atmosphere Cli-174

matologic). The yearly repeating atmospheric forcing follows a ’normal’ year strategy (Large and175

Yeager 2004). This choice emerged from the recognition that, when using CheapAML, transient176

atmospheric winds need to be accounted for to simulate a realistic oceanic mean state (Jamet et al.177
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2019). These are absent from climatological atmospheric conditions. The period August 2003 to178

July 2004 has been selected because it minimizes the difference between the number of occur-179

rences of the Atlantic Ridge weather regime and its 1958-2012 climatological mean. We have180

placed the focus on the Atlantic Ridge weather regime to identify a normal year since it has been181

shown to be the weather regime the most correlated to the North Atlantic subtropical Sea Sur-182

face Height interannual variability (Barrier et al. 2013). The occurrence of this weather regime183

has been found to induce a northward shift of the wind-stress curl, altering the Sverdrup balance184

and generating westward propagating Rossby waves. Such processes are of importance for the185

low-frequency variability of the North Atlantic large-scale circulation such as the Atlantic Merid-186

ional Overturning Circulation (AMOC) which is closely linked to the intensity of the gyres (Zhang187

2008). A fourth ensemble (OCAC, Open boundary conditions Climatologic and Atmosphere Cli-188

matologic) is run with both climatological boundary conditions and ’normal’ year atmospheric189

forcing, such that the forcing involves no frequencies longer than one year. This fourth ensemble190

provides us a quantitative estimate of the AMOC variability that we cannot interpret as forced by191

the low-frequency variability of the atmospheric forcing or the boundary conditions. Although not192

exhaustive, possible explanation for the presence of a low-frequency, ensemble mean AMOC vari-193

ability in this ensemble may involve the presence of a ’residual’ intrinsic variability due to the size194

of our ensemble (12 members), or the development of a forced low-frequency AMOC variability195

through non-linear processes. Such questions are however out of the scope of this paper, and thus196

left for further studies.197

Finally, two additional single simulations (with no ensemble strategy) are run with fully varying198

open boundary conditions only at the southern or the northern extend of the domain, while all199

other forcing (including the surface) are yearly repeating. These two simulations will be used200

in Section 6 to disentangle the respective contribution of the northern and the southern boundary201
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for generating boundary forced AMOC variability in the subtropical gyre. Table 1 provides a202

summary of the simulations discussed in this study.203

Our focus is placed on interannual-to-decadal AMOC variability. The model output 5-day av-204

eraged AMOC time series are thus band-pass filtered to remove large variance at sub-annual time205

scales, trends and very long frequencies unresolved by our 50-year long simulations. The filter206

is a combination of high- and low-pass filters, and a seasonally varying climatological mean is207

removed. This time filtering isolates periods between 2 and 30 years (Jamet et al. 2019b). First208

and last years of simulations are discarded in the following analyses due to side effects of this time209

filtering.210

b. Mean state211

The time mean overturning circulation simulated by our reference, realistic ensemble (ORAR;212

Fig. 1, top left panel) exhibits a positive cell in the 3000 upper meters, peaking at about 18 Sv213

(1 Sv = 106 m3 s−1) at 34◦N and 1200 m depth. Below 3000 m the overturning streamfunction214

is negative and of about 4-5 Sv at 4000 m depth. Near the surface, we also note the presence215

of two shallow subtropical wind-driven cells in the upper 200 m. Although the bottom negative216

cell is slightly stronger than in observations (Send et al. 2011; Frajka-Williams et al. 2011), all217

these features are typical of what is usually found in ocean-only (Danabasoglu et al. 2014) and218

climate models (Gastineau and Frankignoul 2012; Muir and Fedorov 2016). Comparison of219

the ensemble mean AMOC and the RAPID-MOCHA-WBTS observational estimates can be220

found in the Supporting Informations of Jamet et al. (2019b).221

The three remaining panels of Fig. 1 provide estimates of the modified mean state when forcing222

(surface and open boundaries) is turned to yearly repeating signals. The time mean AMOC is223

reduced by about 0.1-0.2 Sv in most of the basin under climatological open boundary conditions,224
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with the largest reduction observed near the AMOC time mean maximum, i.e. 34◦N and 1200 m225

depth (top right panel). The effects of turning the atmosphere from realistic to yearly repeating226

forcing is, not surprisingly, most pronounced in the upper layers, with notably a weakening of227

the northern hemisphere subtropical wind-driven cell by about -2 Sv (bottom left panel). Time228

mean AMOC changes are otherwise mostly positive with local maximum (∼ 0.5 Sv) in localized229

regions. The OCAC ensemble time mean AMOC changes reflect the combination of these230

two effects (bottom right panel). Overall, those changes remain weak in amplitude and thus lie231

in the range of the variety of time mean AMOC usually simulated by models. Thus, as we will232

discuss below, changes in the forcing at the surface and at the boundaries primarily impact the233

simulated low-frequency AMOC variability, with little changes in the time mean AMOC state on234

which this variability develops.235

3. Leading modes of forced AMOC variability236

We extract the leading modes of forced AMOC variability in each ensemble by performing a237

Principal Component Analysis on the ensemble mean AMOC (Fig. 2). The EOF1 of the refer-238

ence, realistic ensemble (ORAR, top left panel) exhibits a broad positive signal over most of the239

domain, peaking to about 1.2 Sv at 15◦N and 1500 m depth, and a sign reversal around 45◦N and240

15◦S. It explains slightly less than 40% of variance, and has been interpreted, in connection with241

previous studies, as the AMOC response to yearly varying atmospheric forcing by Jamet et al.242

(2019b). This interpretation is further supported here by comparing this leading mode of AMOC243

variability under realistic forcing against those obtained in the other ensembles. When the inter-244

annual and longer variability of the atmosphere is removed and the surface forcing repeats every245

year (ORAC, bottom left panel), the spatial pattern of the leading mode radically changes. It now246

exhibits a large band of meridionally coherent AMOC anomalies with no sign reversal, revealing247
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the imprint of remotely-forced signals on the subtropical AMOC variability. It reaches its248

maximum near the maximum of the time mean AMOC, i.e. at 1200 m depth. We note here that249

the meridional structure of this mode indicates a tendency of the AMOC to oscillate in phase at all250

latitudes. This would thus suggest a rapid communication of boundary signals toward the interior251

of the domain, potentially through Kelvin waves as suggested by others (Johnson and Marshall252

2002; Biastoch et al. 2008b; Zhang 2010; Hodson and Sutton 2012; Leroux et al. 2018). In con-253

trast, when the imprint of the low-frequency atmospheric forcing on AMOC variability is isolated254

from the influence of the boundaries (OCAR, top right panel), the leading mode of variability is255

found to be similar to the one obtained under realistic forcing, i.e. a ’gyre-specific’ mode with256

a sign reversal at the intergyre. Comparing the results of these two ensembles (i.e. ORAC257

and OCAR) with those obtained under realistic forcing (i.e. ORAR) strongly supports earlier in-258

terpretations: The leading mode of the forced AMOC variability extracted through a Principal259

Component Analysis (PCA) on a realistic simulation reflects the oceanic response to the local at-260

mospheric forcing (Eden and Jung 2001; Eden and Willebrand 2001; Deshayes and Frankignoul261

2008; Gastineau and Frankignoul 2012; Jamet et al. 2019b). Such an interpretation is also con-262

sistent with the relative magnitude of these modes. Although they all explain about 40 to 50% of263

the forced AMOC variability, the leading mode in the ensemble ORAC is weaker (∼0.4-0.5 Sv)264

compared to those obtained under realistic atmospheric forcing (∼1 Sv). These differences are265

also seen in variance (Fig. 3), where the temporal standard deviation of the subtropical AMOC in266

the ensemble ORAC is about half of the standard deviation observed in the two ensembles driven267

by realistic atmospheric forcing. Thus, due to the stronger signal imprinted by the local, low-268

frequency atmospheric forcing on the ocean circulation, these dynamics are naturally identified269

as leading modes of variability through a PCA since the latter looks for modes with the largest270
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variance. Note that we only mentioned the first EOFs here, but have also computed the second and271

subsequent principal components, which all exhibit more regional patterns of variability.272

When both surface and open boundary forcing are yearly repeating (ensemble OCAC), a weak273

’residual’ variability appears. The PCA of this ’residual’ variability reveals that about 35% of274

this variability is characterized by a large scale mode that strongly resembles the intrinsic mode275

of AMOC variability identified by Jamet et al. (2019b) in the realistic (ORAR) ensemble, and276

discussed in Section 5. This suggests this mode of ’forced’ variability is likely to reflect a remnant277

of the intrinsic variability due to the relatively modest size of our ensemble size, i.e. 12 members.278

Although not conclusive, this supports our interpretation of a quantitative estimate of the AMOC279

variability that cannot be interpreted as forced by the low-frequency variability of the forcing.280

Aside from their differences in spatial patterns, these modes also exhibit very distinct spectral281

contents. We illustrate this in Fig. 3 by reconstructing the time series of their respective maximum,282

i.e. multiplying the normalized PCs by the local maximum of their associated EOFs. The aim of283

this reconstruction is to simplify the interpretation, where spectral properties of these modes are284

shown with their respective amplitude. From their time series, it is clear that the leading mode285

of forced AMOC variability in the ensembles ORAR and OCAR (both driven by realistic atmo-286

spheric forcing) vary almost perfectly in phase. Their respective Power Spectral Density (PSD)287

functions confirm such an agreement in term of spectral content. The agreement is particularly288

pronounced at interannual time scales, where both of these modes exhibit two local maximum at289

2-3 and 6-8 years frequency bands typical of the North Atlantic atmospheric spectrum (Czaja and290

Marshall 2001; Reintges et al. 2017). When the ocean is driven by a yearly repeating atmospheric291

forcing however (ORAC and OCAC ensembles), the interannual variance strongly reduces and292

most of the energy resides at decadal time scales. The ensemble driven by fully varying open293

boundary conditions (ORAC) exhibits indeed a large peak of variability in the 10-30 years band,294
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which exceeds the spectral energy of the leading mode obtained in the realistic (ORAR) ensemble.295

This result further supports our earlier interpretation that the leading mode of AMOC variability296

computed under realistic conditions reflects the response to a local, low-frequency atmospheric297

forcing, but contains little information about the boundary forced signal.298

The PCA discussed here provides a statistical description of the main spatio-temporal patterns of299

AMOC variability. It however only accounts for a given fraction (about 40-50% in our ensembles)300

of the total signal. We thus extend our spectral analysis in the following by considering full301

time series to further investigate time scale separation between local atmospherically forced and302

remotely forced AMOC variability, and assess their linear combination for interpreting realistic303

time series.304

4. Testing the linear combination assumption305

a. Analysis of full time series306

We now wish to extend our results to full time series in order to account for the complete low-307

frequency AMOC spectrum. To replace our numerical results in an observational context, we308

choose to look first at the time series simulated by our four ensembles at 26.5◦N, that is, the latitude309

of the RAPID-MOCHA-WBTS array (McCarthy et al. 2015a). AMOC time series at that location310

are plotted on the top left panel of Fig. 4, and their associated PSDs appear on the top right panel.311

Differences in the AMOC time series are largest between the two ensembles driven by the full312

spectrum of atmospheric forcing, i.e. ORAR and OCAR, against those driven by yearly repeating313

atmospheric forcing, i.e. ORAC and OCAC, reflecting here again the stronger control of the local314

atmospheric forcing on the low-frequency AMOC variability. Thus, AMOC variability simulated315

by the ensemble OCAR tends to closely follow that simulated by the realistic ensemble ORAR,316
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with most of the interannual peaks of variability consistently reproduced. We note for instance that317

the several Sverdrup downturn in 2009-2010, which has been monitored by the RAPID array and318

interpreted as an atmospherically forced signal (Roberts et al. 2013; Zhao and Johns 2014; Leroux319

et al. 2018), is well reproduced by the two ensembles driven by fully varying atmospheric forcing,320

but is not in the two ensembles driven by yearly repeating atmospheric forcing. Our results are321

thus consistent, and support, this earlier interpretation. We note however that the ensemble OCAR322

exhibits a more energetic AMOC variability in the 3-6 year band than the realistic ensemble ORAR323

(top right panel). This would suggest that low-frequency atmospheric forcing drives an AMOC324

variability within this frequency band which is damped by the realistic open boundary forcing.325

Focusing now on decadal time scales, spectral analysis reveals that the AMOC variability in the326

ensemble OCAR is weak compared to the realistic ensemble ORAR (Fig. 4, top panels). Results327

from the ensemble ORAC suggest that the spectral content of the AMOC variability at those time328

scales is indeed driven by the open boundaries, with a spectral content consistently reproduced.329

These results thus suggest that the time scale separation between the local, atmospherically forced330

signal and the signal driven by open boundaries identified for leading EOFs holds for the full time331

series of AMOC variability. As a result, it is likely that the subtropical AMOC variability could332

be understood as a linear superposition of these two signals. We will further test this assumption333

in Section b.334

We now wish to extend these results to all latitudes in our domain, that is, from 20◦S to 55◦N.335

At 1200 m depth, the maximum of the time mean AMOC, we then compute at all latitudes the336

PSD function of AMOC time series for each ensemble mean, and compare their results. Results337

appear on Fig. 5 for the three ensembles ORAR, OCAR and ORAC. Results for the ensemble338

OCAC are not shown. Previous analyses show a very weak signal in this ensemble, and we have339

verified that this holds at all latitudes. Results from the ensemble ORAC confirm our earlier find-340
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ings, that is, the open boundary conditions drive AMOC variability at decadal time scales. For341

shorter time scales, the spectral content in this ensemble is weak and do not explain any of the342

spectral peaks in the 1-10 year band found in the realistic ensemble ORAR. Similarly, results from343

the ensemble OCAR confirm that the local atmospheric forcing drives AMOC variability at inter-344

annual time scales. In this frequency band, the spectral content of the realistic ensemble ORAR345

is consistently reproduced. However, we found that the ensemble OCAR also exhibits significant346

AMOC variability at decadal time scales in the 30-40◦ latitude band. This would suggest that at347

these latitudes the atmosphere exerts a stronger effect on decadal AMOC variability. This region348

is characterized by the subpolar-subtropical intergyre position, suggesting a potential adjustment349

of the latter to decadal fluctuation in the local wind stress (Zhang 2010). At these latitudes, both350

remote signals and local atmospheric forcing imprint a decadal AMOC variability, with potentially351

complex interactions.352

To conclude, although peculiarities arise at the subpolar-subtropical intergyre position (30-353

40◦N), spectral estimates highlight that forced AMOC variability is driven by local atmospheric354

forcing at interannual time scales and remote processes at decadal time scales in most of the sub-355

tropical gyre. Based on this time scale separation, we thus suspect that in the realistic ensemble356

ORAR, AMOC variability can be understood as a linear combination of these two sources of357

variability as suggested earlier by Biastoch et al. (2008a).358

b. The linear assumption359

We aim here at assessing to which extent the realistic forced AMOC variability can be under-360

stood as a linear combination of local, atmospherically forced and remotely generated signals.361

For this purpose, we reconstruct an AMOC streamfunction as the sum of the two streamfunctions362

simulated by the ensembles OCAR and ORAC, and compare it with the realistic ensemble ORAR.363
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Following the previous section, we first present and discuss results at 26.5◦N, and then extend our364

analysis at all latitudes of our regional domain.365

At 26.5◦N (Fig. 4, bottom panels), results from this reconstruction are promising. The recon-366

structed time series is highly correlated (r = 0.9) to the realistic forced AMOC variability, and367

lies within the ensemble spread induced by intrinsic ocean dynamics. When taken separately, the368

forced AMOC variability in the ensemble OCAR (ORAC) is correlated to r = 0.8 (r = 0.3) to369

the time series diagnosed in the realistic ensemble ORAR. Added together, the contribution of370

each ensemble dynamics is to improve correlation with realistic estimates of the forced AMOC371

variability, although most of the correlation is due to the atmospheric forcing, consistently with a372

stronger control of the latter compared to remote signals. The large strengthening of the AMOC by373

about 4 Sv in the mid-1990s provides a nice illustration for this reconstruction. Over this period,374

the AMOC time series in the ensemble OCAR is indeed off by about 1 Sv compared to the real-375

istic ensemble ORAR. But the ensemble ORAC exhibits at the same time a low-frequency signal376

that contributes about 1 Sv to the strengthening of the AMOC. Added together, the reconstructed377

time series is in very good agreement with the AMOC variability in realistic conditions over that378

period.379

Although the correlation between the two time series is high (r = 0.9), we note however that380

differences occur over the course of the simulation. Spectral analyses highlight that such discrep-381

ancies have preferred frequency, with a more energetic reconstructed AMOC in the 3-6 years band382

and at decadal time scales (Fig. 4, bottom right panel). The 3-6 years band corresponds to the fre-383

quency band where the ensemble OCAR exhibits an over estimated AMOC variability compared384

to the realistic scenario (cf Section a). These results would suggest that in this frequency band,385

the AMOC variability at 26.5◦N cannot be understood as a linear combination of two independent386

signals, but rather that the interactions between them needs to be accounted for.387
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We now extend the analysis of the reconstructed AMOC time series for all range of latitude388

within our domain. At 1200 m depth, the spectral content of the reconstructed AMOC super-389

imposes on the spectral content of the realistic ensemble ORAR with a good level of agreement390

(Fig. 5). The general patterns of the spectral content closely match, and regions of high spectral391

density are consistently reconstructed. This visual inspection is further supported by taking the392

difference of these two PSDs. Results appear on the bottom right panel of Fig. 5, where blue col-393

ors indicate a more energetic reconstructed AMOC. Although significant differences are observed394

at specific locations, we found that most of the AMOC variability in our realistic ensemble can be395

understood as a linear combination of the two ensembles OCAR and ORAC. Marked differences396

appear however at some localized spots, such as the decadal AMOC variability in the 30-40◦N397

latitude band. We identified earlier this latitude band as a region where the local atmospheric398

forcing imprints an AMOC variability at decadal time scales. Such a surface forcing would thus399

potentially interact with the decadal signal imposed by the boundaries, leading to a more complex400

signal than a simple linear combination. We also note that the mismatch in the 3-6 years band401

between the reconstructed and the realistic AMOC variability at 26.5◦N seems to be a peculiarity402

of the 20-30◦N latitude band.403

Permutting open boundaries and surface forcing from realistic to yearly repeating signals404

induces an imbalance between the state of the ocean and the applied new boundary condi-405

tions. To adjust, the ocean is likely to generate wave-like signals in response to these changes,406

such that we cannot exclude the presence of artificial modes in our regional configuration.407

Such modes could imprint into the AMOC, an may well play a role in the overestimated variability408

at 26.5◦N and in the 30-40◦N latitude band diagnosed in the ensemble OCAR. Although further409

analyses are required to consistently assess the potential effects of such modes, we note that our410

results are similar to what Leroux et al. (2018) diagnosed in their global and North Atlantic 1
4
◦

411
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ensembles. When constrained by imposed climatological boundary conditions at 20◦S and 81◦S,412

the two leading modes of the ensemble mean AMOC in their 10-members regional North Atlantic413

ensemble exhibit an slightly larger amplitude than the leading modes diagnosed in their global,414

50-member ensemble. The two ensembles used by Leroux et al. (2018) are significantly different415

from ours, especially regarding boundary conditions, but they exhibit differences that compare416

well with our results. This suggest a dynamical origin of the over estimated AMOC variability in417

our OCAR ensemble rather than numerical artefacts.418

c. Benefits of the ensemble419

We have shown that the realisitc AMOC variability within the North Atlantic subtropical420

gyre can be understood, to a good extend, as a linear superposition of signals with different421

origins. This support the earlier findings of Biastoch et al. (2008b), and extend their results422

in an eddying regime. We have performed these analyses with an ensemble strategy, but it423

is legitimate to question its necessity due to the large computational time required to pro-424

duce such ensemble simulations. We thus want here to illustrate the benefits of this strategy425

by comparing the results obtained with single simulations. The four ensembles have been426

initialized with the same set of 12 initial conditions. Comparing the members across the en-427

sembles is thus the analog of regular sensitivity experiments performed to identify the ocean428

response to different forcing.429

We consider here the correlation between the reconstructed and the realistic AMOC vari-430

ability. Results appear on the left panel of Fig. 7 for the reconstruction based on ensemble431

means. The reconstructed AMOC is correlated to the realistic AMOC to at least 0.9 in most432

of the basin. These correlations weakened in the Gulf Stream region an at depth, where433

intrinsic AMOC variability has been shown to be the largest (Jamet et al. 2019b). When con-434

19



sidering only one member however, the correlations strongly reduce in almost all the basin435

(Fig. 7, midde panel). At 1200 m depth (right panel), correlations drops to 0.6 in the subtrop-436

ical gyre and to 0.2 in the Gulf Stream region. These low correlations reflect the presence of437

an intrinsic AMOC variability in the simulations which we discuss in the next section. This438

intrinsic AMOC variability imprints in all simulations with the same pattern and spectral439

content, but with a random phase. There contribution do not add linearly, explaining the440

lower correlations found when considering only one member of the ensembles. This result il-441

lustrates the benefits of ensemble simulations to disentangle the respective role of the forcing442

in eddy-resolving simulations.443

5. Intrinsic AMOC variability444

We have thus far focused on the forced AMOC variability as simulated by our four ensembles.445

This forced signal has been computed through an ensemble average. This averaging operation446

captures the signal common to all members within an ensemble, and thus reflects the ocean re-447

sponse to external forcing (we recall here that all members of an ensemble are exposed to the448

same surface and open boundary forcing). However, each member within a given ensemble is not449

locked to this ensemble mean. They exhibit sensitivity to initial conditions such that a significant450

portion of the AMOC variability within a given member is driven by intrinsic oceanic dynamics451

(Leroux et al. 2018; Jamet et al. 2019b). We thus now want to focus on this intrinsic component of452

the variability by considering the ensemble spread in our four ensembles and assess its sensitivity453

to changes in the forced signal.454

Following Jamet et al. (2019), we first compute, within each of the four ensembles, the de-455

parture of each member from its associated ensemble mean. We then perform a PCA on each456

ensemble member residual and average the results together to yield a map of intrinsic AMOC457
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variability. Results of this analysis highlight the presence of a basin scale mode of intrinsic vari-458

ability in each ensemble that strongly resembles the intrinsic basin scale mode identified by Jamet459

et al. (2019b) in the realistic ensemble ORAR (Fig. 6). This basin scale mode peaks at about 1.2460

Sv in the subtropical gyre near 2000 m depth, and mostly expresses at interannual time scales.461

In previous sections, we have discussed the fundamentally different characteristics of the forced462

AMOC variability simulated by these ensembles. Thus, the level of agreement found in the intrin-463

sic component of these ensembles highlights the very weak sensitivity of the basin scale mode of464

intrinsic AMOC variability to changes in the surrounding forced component of the AMOC vari-465

ability. Such a weak sensitivity has been reported earlier by Leroux et al. (2018) for the intrinsic466

AMOC variability at mid-depth. Our results provide a vertical and spectral generalisation of this467

earlier finding.468

6. Northern and southern origin of the decadal AMOC variability469

Biastoch et al. (2008b) have provided evidence that decadal AMOC variability in the North470

Atlantic subtropical gyre might be imprinted by Aghulas meso-scale dynamics. Those results471

contrast with the prevailing mechanism for explaining the decadal subtropical AMOC variability472

as being paced by high latitude processes such as deep water formation. Their results have re-473

cently been supported by Leroux et al. (2018) in their 50-members global ocean ensemble, where474

they identified a South Atlantic mode of intrinsic AMOC variability. This suggests that the meso-475

scale dynamics of the Agulhas current has the potential to pace intrinsic AMOC variability further476

north, and thus are likely to imprint on the RAPID observations at 26.5◦N. In our regional config-477

uration, this South Atlantic signal would be part of our southern boundary, and would thus emerge478
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as a forced signal1 . We have derived our open boundary conditions from the 1/12◦ global ocean479

simulation ORCA12, which is a higher resolution version of the ORAC025 configuration used by480

Leroux et al. (2018) in their ensemble simulation. We are thus confident that our boundary condi-481

tions are relevant for imposing a South Atlantic mode of variability. To isolate the influence of our482

southern boundary from its northern counterpart, we analyze the two additional simulations runN483

and runS driven by either northern or southern fully varying boundary conditions, the remaining484

forcing being yearly repeating (including surface forcing).485

Due to large computational time required to generate ensembles, we were not able to produce486

ensembles for these additional simulations. They are thus single realizations, such that ensemble487

statistics are not at our disposal for accurately separating the forced AMOC variability from its488

intrinsic counterpart. Instead, we leverage results from our four ensembles to interpret the dy-489

namics simulated by these two additional single simulations. We particularly recognize that those490

two simulations are driven with yearly repeating atmospheric forcing, such that interannual forced491

AMOC variability in the North Atlantic subtropical gyre is expected to be weak. The dynam-492

ics that develops at those time scales thus mostly reflects intrinsic ocean processes. We estimate493

the amplitude of this intrinsic variability by examining one member of the ensemble OCAC. This494

ensemble is driven by yearly repeating atmospheric forcing and open boundary conditions, pro-495

viding an estimate of the signals that develop in our regional configuration at low-frequency that496

cannot be interpreted as forced. Within this ensemble, member #02 exhibits the strongest intrinsic497

variability within the subtropical gyre. We thus use this member to maximize our estimates of498

AMOC variability that cannot be interpreted as forced. Additionally, we previously identified that499

1Note that the forced characteristic of the imprint of the South Atlantic dynamics on the North Atlantic subtropical AMOC variability only

results from our regional model strategy. It does not question the intrinsic nature of this variability in the real ocean, as proposed by others with

global simulations (Biastoch et al. 2008b; Hirschi et al. 2013; Grégorio et al. 2015; Leroux et al. 2018).
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the boundary forced AMOC signals dominate at decadal time scales; therefore, we now focus our500

discussion in this frequency band.501

AMOC anomalies at 1200 m depth are shown in Fig. 7 as latitude-time Hovmöller diagrams.502

Comparing AMOC anomalies in the two single simulations runN and runS with the ORAC ensem-503

ble mean strongly suggests that our decadal boundary forced AMOC variability is mostly driven504

by signals entering the domain through the northern boundary. The simulation runN exhibits in-505

deed a marked strengthening during the late nineties very comparable to the AMOC variability506

diagnosed in the ORAC ensemble mean, although less regular in time due to the presence of in-507

terannual intrinsic variability. In contrast, no such signal is found in runS, suggesting a weaker508

impact of southern origin dynamics for the overall North Atlantic subtropical AMOC variabil-509

ity. Also note that our detrending procedure has removed very low-frequency AMOC signals (not510

shown). At 26.5◦N, this very low-frequency variability exhibits a strengthening of the AMOC511

maximum up to the mid- 1990’s of about 1 Sv, and a decay afterward. This signal is observed in512

both the ORAC ensemble mean and in runN, consistent with what can be found in ocean models513

of the CORE-II experiments (Danabasoglu et al. 2016). In contrast, we did not found evidence of514

such a signal in runS, suggesting here again the leading role of subpolar North Atlantic dynamics515

for the low-frequency AMOC variability within the North Atlantic subtropical gyre.516

Finally, although the imprint of the southern boundary on the forced AMOC variability is glob-517

ally weak, its contribution, not surprisingly, prevails in the southern part of our regional domain.518

South of the equator, intrinsic AMOC variability is weak (σ = 0.3 Sv; Fig. 7 top right panel), such519

that AMOC anomalies observed in runS can be interpreted as driven by our southern boundary.520

At these latitudes, AMOC variability in runN is also weaker (σ = 0.5 and σ = 0.8 Sv for runN521

and runS, respectively), and does not explain the 0.7 Sv AMOC standard deviation diagnosed in522

the ORAC ensemble mean. In contrast with the northern boundary, the signal imprinted523
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by the southern boundary contains energy at interannual time scales. This is visible in the524

Hovmöller diagrams for both the ensemble mean <ORAC> and the runS, as well as in the525

spectral estimates of AMOC variability of Fig. 5, bottom left panel. In the North Atlantic sub-526

tropical gyre, the AMOC variance is slightly larger in the runS than in OCAC ensemble member527

#02 (σ = 1 Sv and σ = 0.8 Sv, respectively), suggesting a weak contribution of about 0.1-0.2 Sv528

for the overall subtropical AMOC variability. This would suggest, altough their imprint are weak,529

South Atlantic signals could make their way through the equator and contribute to AMOC530

variability further north. Those results are consistent with earlier studies (Biastoch et al. 2008b;531

Leroux et al. 2018), but we are not able to robustly investigate such a northward propagation532

route with a single, eddy resolving simulation. Further investigations are thus required to support533

those preliminary estimates of the contribution of South Atlantic dynamics for the North Atlantic534

subtropical AMOC variability.535

7. Summary and discussion536

We analyzed in this study the results of four ensemble simulations of a regional (20◦S-55◦N)537

configuration of the North Atlantic. This analysis focused on the origin (local or remote) of the538

forced, low-frequency (2-30 years) variability of the Atlantic Meridional Overturning Circulation539

(AMOC) in the subtropical gyre. Simulations have been carried out at eddy-resolving resolution540

( 1
12

◦
) to account for the role of eddies in the general ocean circulation. Ensemble statistics have541

thus been applied to isolate the AMOC signals driven by forcing from those with an intrinsic542

origin due to non-linear dynamics explicitly resolved at this resolution. The four ensembles have543

been exposed to different forcing, where we have alternatively permuted surface and boundary544

forcing from fully varying (realistic) to yearly repeating signals. Comparing the AMOC variability545

simulated by these four ensembles allow us to disentangle the respective contribution of low-546
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frequency atmospheric forcing from signals with a remote origin and entering the domain through547

the boundaries. The main results can be summarized as follow:548

1. Isolating the variability driven by the local atmospheric forcing from the variability driven by549

open boundaries revealed a pronouced time scale separation: The leading mode of AMOC550

variability driven by local surface forcing dominates at interannual (2-10 years) time scales,551

while that driven by open boundaries dominates at decadal (10-30 years) time scales. Due to552

the stronger imprint of the local atmospheric forcing, the leading mode of AMOC variability553

in realistic conditions (i.e. with both realistic surface and realistic boundary forcing) extracted554

through PCA mostly reflects the imprint of the atmosphere.555

2. The marked time scale separation between surface and boundary forcing allows for a good556

reproduction of the realistic AMOC variability in most of the subtropical gyre through a557

linear combination of surface and boundary forced signals. Peculiarities emerged however at558

the subtropical-subpolar integyre position. There, the imprint of the atmosphere is found to559

extend at decadal time scales, and interact with the boundary forced signal.560

3. Although marked differences appeared in the forced (ensemble mean) AMOC variability,561

all ensembles exhibit a very similar intrinsic (ensemble spread) AMOC variability. They562

all reproduce a basin scale mode of intrinsic AMOC variability peaking at 20◦N and 2000563

m depth, with an interannual time scales. This highlights the very weak sensitivity of this564

intrinsic mode to the surrounding forced AMOC variability, and thus no causal relationship565

between the two.566

4. Both northern and southern boundaries are found to contribute to AMOC variability within567

our domain, although with different amplitude. Overall, the contribution of northern origin568
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signals dominates, particularly at the RAPID site (26.5◦N), but southern origin signals might569

well contribute at second order.570

These results bring new insights in the partioning of the subtropical AMOC variability. Al-571

though the sensitivity experiments on the southern or northern origin of the boundary forced572

AMOC variability suggest a stronger imprint of the northern boundary signal for AMOC573

variability at 26.5◦N, they also support the earlier findings of Biastoch et al. (2008b) and Leroux574

et al. (2018) where the southern boundary is found to imprint a weak AMOC variability at 26.5◦N575

at decadal time scales, with a likely intrinsic origin (Leroux et al. 2018). Such a contribution is576

suggested to be of the order of 0.1-0.2 Sv, consistent with their earlier estimates. Dedicated studies577

are however required to provide a robust estimate of the imprint of the South Atlantic dynamics on578

the subtropical AMOC variability, thus helping the interpretation of the RAPID-MOCHA-WBTS579

time series. For this purpose, a filtering procedure could be developped to consistently filter in-580

trinsic AMOC variability, such as what Close et al. (In Revision) proposed to separate forced and581

intrinsic variability of the sea surface height. Applying such a filtering procedure to the AMOC582

time series would first reduce the computational time required to extract forced AMOC signals583

from single, eddy resolving simulations, and would also help interpreting the forced component584

of AMOC variability as observed by the RAPID-MOCHA-WBTS (McCarthy et al. 2015b) or the585

OSNAP (Lozier et al. 2017) arrays.586

Finally, we would like to further discuss the implications of our results at the intergyre position.587

We found that the atmosphere drives AMOC variability at decadal time scales in the 30-40◦ lat-588

itude band, which interacts with the decadal scale signals driven by boundaries. As a result, the589

realistic AMOC variability in this region cannot be reconstructed through a linear combination590

of these two signals. These results are in line with the complex dynamics associated with the591
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crossover of the Gulf Stream and the Deep Western Boundary Current (Spall 1996a,b; Bower and592

Hunt 2000; Zhang and Vallis 2007; Andres et al. 2016). From a Lagrangian point of view however,593

modifications of DWBC signals through interaction with the Gulf Stream are expected to imprint594

further south as those signals propagate along the western boundary. However, within the sub-595

tropical gyre, we found that the linear reconstruction leads to consistent estimates of the realistic596

low-frequency AMOC variability. These results thus question on the role played by the complex597

dynamics at the intergyre position for the low-frequency AMOC variability of the subtropical gyre,598

thus for the interpretation of the RAPID array time series.599
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TABLE 1. Summary of the simulations discussed in this study, where < . > indicates ensemble simulations.

Open BoundaryAtmosphere Fully varying Normal year

Fully varying <ORAR> <ORAC>

Climatologic <OCAR> <OCAC>

Northern boundary real runN

Southern boundary real runS
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FIG. 1. Time mean Atlantic Meridional Overturning Circulation (AMOC) streamfunction for the reference,

realistic ensemble ORAR (top left, contours intervals = 2 Sv), and associated departures from this reference

ensemble for the 3 other ensembles OCAR (top right), ORAC (bottom left) and OCAC (bottom right, contour

intervals = 0.2 Sv). See Table 1 for further details on the experiments. Zero contours are in black. The dashed

line represents the location of the RAPID-MOCHA-WBTS array, and the black dot the depth of the maximum

time mean AMOC used in Fig. 5. The time mean AMOC is computed from the ensemble mean, unprocessed,

5-day averaged model outputs.
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FIG. 2. Leading modes of the ensemble mean AMOC variability in the four ensembles ORAR (top left),

OCAR (top right), ORAC (bottom left) and OCAC (bottom right). Empirical Orthogonal Functions (EOFs)

have been normalized by the standard deviation of their associated Principal Components (PCs) such that they

contain the amplitude, in Sv, of the explained signal. Zero contours are in black and contour interval is 0.1 Sv.

The dashed line represents the location of the RAPID-MOCHA-WBTS array, and the black dot the depth of the

maximum time mean AMOC.
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FIG. 3. Temporal standard deviation of the ensemble mean AMOC for the ensemble ORAR (top left), OCAR

(top right), ORAC (bottom left) and OCAC (bottom right). Contour interval is 0.1 Sv. The dashed line represents

the location of the RAPID-MOCHA-WBTS. The temporal standard deviation is computed from the ensemble

mean, time processes (band-passed filtered and deseasonalized) AMOC.
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FIG. 4. Time series of the PCs associated with the leading mode of variability presented on Fig. 2 (left), and

their associated Power Spectral Density (PSD) function (right). Normalized PCs have been multiplied by the

respective maximum of their associated EOFs to account for their magnitude.
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FIG. 5. (Top) Times series of the ensemble mean AMOC anomalies at 26.5◦N and 1200 m depth in the

four ensembles (left), and their associated PSD functions (right). PSD functions have been smoothed with a

5-point moving average window. (Bottom) Same as top but for the realistic ensemble ORAR (black), with ±

one standard deviation associated with the ensemble spread (grey shading), and a reconstruction made as the

sum of the two ensembles mean ORAC+OCAR (cyan).
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FIG. 6. Ensemble mean AMOC PSD functions as a function of latitude at 1200 m depth for the three en-

sembles ORAR (top left), OCAR (top right), ORAC (bottom left). Grey contours on top left panel show the

PSD of the reconstructed AMOC as a combination of the two ensembles ORAC+OCAR, and the error in the

reconstructed spectral content is shown on the bottom right panel. Blue colors indicate that the PSD of the re-

constructed AMOC time series exceeds that of the realistic ensemble. PSD functions have been smoothed with

a 5-point moving average window. The black line indicates the latitude of 26.5◦N.

799

800

801

802

803

804

41



20 10 0 10 20 30 40 50
Latitude

5

4

3

2

1

0

De
pt

h 
[k

m
]

r( < OCAR > + < ORAC > , < ORAR > )

20 10 0 10 20 30 40 50
Latitude

5

4

3

2

1

0
r(OCARmemb#00+ORACmemb#00, ORARmemb#00)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlation coefficients

20

10

0

10

20

30

40

50

La
tit

ud
e

At 1200 m
Ens. mean < . >
memb#00

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7. Correlation coefficients between the realistic experiment ORAR and the linear reconstruction

OCAR+ORAC for (right) the ensemble mean and (middle) memb#00 only. (right) Correlations at the depth

of 1200 m for the ensemble mean (red) and memb#00 only (grey).
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FIG. 8. (Top) Leading mode of intrinsic AMOC variability, computed following Jamet et al. (2019b), for the

4 ensembles ORAR (top left), OCAR (top right), ORAC (bottom left) and OCAC (bottom right). EOFs have

been normalized by the standard deviation of their associated PCs such that they contain the amplitude, in Sv,

of the explained signal. Zero contours are in black, contour interval is 0.1 Sv and the dashed line represents the

location of the RAPID-MOCHA-WBTS array. (Bottom) Associated spectral content, computed as the ensemble-

averaged PSD functions of the normalized PCs multiplied by the maximum of their associated EOF.
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FIG. 9. Latitude-time Hovmöller diagrams of AMOC anomalies at 1200 m depth for (top left) the ORAC

ensemble mean, the < . > indicates ensemble averaging, (top right) ensemble member #02 of the ensemble

OCAC, and (bottom) the two additional, single simulations runN and runS. Contour interval is 0.5 Sv. Black

dashed line indicates the latitude of 26.5◦N.
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